Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B_tI12_98_f_a-001

This structure originally had the label A2B_tI12_98_f_a. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/G4QQ
or https://aflow.org/p/A2B_tI12_98_f_a-001
or PDF Version

CdAs$_{2}$ Structure: A2B_tI12_98_f_a-001

Picture of Structure; Click for Big Picture
Prototype As$_{2}$Cd
AFLOW prototype label A2B_tI12_98_f_a-001
ICSD 609931
Pearson symbol tI12
Space group number 98
Space group symbol $I4_122$
AFLOW prototype command aflow --proto=A2B_tI12_98_f_a-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}$

Other compounds with this structure

CdAs$_{2-x}$P$_{x}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (4a) Cd I
$\mathbf{B_{2}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4a) Cd I
$\mathbf{B_{3}}$ = $\frac{3}{8} \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{8}\right) \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ (8f) As I
$\mathbf{B_{4}}$ = $\frac{7}{8} \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{8}\right) \, \mathbf{a}_{2}- \left(x_{2} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ (8f) As I
$\mathbf{B_{5}}$ = $\left(x_{2} + \frac{7}{8}\right) \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{4}a \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ (8f) As I
$\mathbf{B_{6}}$ = $- \left(x_{2} - \frac{7}{8}\right) \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}- \left(x_{2} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ (8f) As I

References

  • V. A. Rubtsov, E. M. Smolarenko, V. M. Trukhan, V. N. Yakimovich, and L. K. Orlik, Phase diagram of the CdP$_{2}$-CdAs$_{2}$ system, Phys. Stat. Solidi A 115, K155–K158 (1989), doi:10.1002/pssa.2211150238.
  • V. N. Yakimovich, V. A. Rubtsov, and V. M. Trukhan, Phase Relationships in the CdP$_{4}$-ZnP$_{2}$-CdAs$_{2}$-ZnAs$_{2}$ System, Inorg. Mater. 32, 579–582 (1996).

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds (2013). ASM International.

Prototype Generator

aflow --proto=A2B_tI12_98_f_a --params=$a,c/a,x_{2}$

Species:

Running:

Output: