Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B_tI24_107_2abc_2ab-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/3JHK
or https://aflow.org/p/A2B_tI24_107_2abc_2ab-001
or PDF Version

UP$_{2}$ Structure: A2B_tI24_107_2abc_2ab-001

Picture of Structure; Click for Big Picture
Prototype P$_{2}$U
AFLOW prototype label A2B_tI24_107_2abc_2ab-001
ICSD 87138
Pearson symbol tI24
Space group number 107
Space group symbol $I4mm$
AFLOW prototype command aflow --proto=A2B_tI24_107_2abc_2ab-001
--params=$a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak z_{7}$

  • This is very close to the Cu$_{2}$Sb ($C38)$ structure. Indeed, if we allow an uncertainty of 0.3Å FINDSYM puts this in the $C38$ structure.
  • The ICSD entery is from the earlier work of (Pietrasko, 1971).

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $z_{1} \, \mathbf{a}_{1}+z_{1} \, \mathbf{a}_{2}$ = $c z_{1} \,\mathbf{\hat{z}}$ (2a) P I
$\mathbf{B_{2}}$ = $z_{2} \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}$ = $c z_{2} \,\mathbf{\hat{z}}$ (2a) P II
$\mathbf{B_{3}}$ = $z_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}$ = $c z_{3} \,\mathbf{\hat{z}}$ (2a) U I
$\mathbf{B_{4}}$ = $z_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}$ = $c z_{4} \,\mathbf{\hat{z}}$ (2a) U II
$\mathbf{B_{5}}$ = $\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (4b) P III
$\mathbf{B_{6}}$ = $z_{5} \, \mathbf{a}_{1}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{5} \,\mathbf{\hat{z}}$ (4b) P III
$\mathbf{B_{7}}$ = $\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (4b) U III
$\mathbf{B_{8}}$ = $z_{6} \, \mathbf{a}_{1}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{6} \,\mathbf{\hat{z}}$ (4b) U III
$\mathbf{B_{9}}$ = $\left(x_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}+2 x_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (8c) P IV
$\mathbf{B_{10}}$ = $- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}- 2 x_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (8c) P IV
$\mathbf{B_{11}}$ = $\left(x_{7} + z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}$ = $- a x_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (8c) P IV
$\mathbf{B_{12}}$ = $- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}$ = $a x_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (8c) P IV

References

  • P. Wiśniewski, D. Aoki, N. Watanabe, R. Settai, Y. Haga, E. Yamamoto, and Y. . {O}nuki, Shubnikov–de Haas Effect Study of Cylindrical Fermi Surfaces in UP$_{2}$, J. Phys. Soc. Jpn. 70, 278–283 (2001), doi:10.1143/JPSJ.70.278.
  • D. Pietrasko and K. Lukaszewicz, The crystal structure of uranium diphosphide UP$_{2}$, Bull. l'Academie Polo. Sci., Ser. Chim. 19, 237–242 (1971).

Found in

  • Z. E. Brubaker, Y. Xiao, P. Chow, C. Kenney-Benson, J. S. Smith, H. Cynn, C. Reynolds, N. P. Butch, R. J. Zieve, and J. R. Jeffries, Valence instability across magnetostructural transition in USb$_{2}$, Phys. Rev. B 101, 085123 (2020), doi:10.1103/PhysRevB.101.085123.

Prototype Generator

aflow --proto=A2B_tI24_107_2abc_2ab --params=$a,c/a,z_{1},z_{2},z_{3},z_{4},z_{5},z_{6},x_{7},z_{7}$

Species:

Running:

Output: