Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B_tI24_141_2e_e-001

This structure originally had the label A2B_tI24_141_2e_e. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/DBUS
or https://aflow.org/p/A2B_tI24_141_2e_e-001
or PDF Version

Ga$_{2}$Hf Structure: A2B_tI24_141_2e_e-001

Picture of Structure; Click for Big Picture
Prototype Ga$_{2}$Hf
AFLOW prototype label A2B_tI24_141_2e_e-001
ICSD 197276
Pearson symbol tI24
Space group number 141
Space group symbol $I4_1/amd$
AFLOW prototype command aflow --proto=A2B_tI24_141_2e_e-001
--params=$a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak z_{3}$

Other compounds with this structure

Al$_{2}$Mg,  Al$_{2}$Ti,  Ga$_{2}$Ti,  In$_{2}$Zr,  Pb$_{2}$Pr,  Pb$_{2}$Pu,  Sn$_{2}$Pu


  • When $z_{1}=1/4$, $z_{2}=5/12$, and $z_{3}=1/12$, the atoms are on the sites of indium ($A6$) body-centered tetragonal lattice. If, in this case, $c=6a$, the atoms are on the sites of a face-centered cubic lattice, and if $c = 3\sqrt{2} a$, the atoms are on the site of a body-centered cubic lattice. This lattice is placed with the face-centered cubic lattices because most known structures have $c$ near $6a$.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\left(z_{1} + \frac{1}{4}\right) \, \mathbf{a}_{1}+z_{1} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (8e) Ga I
$\mathbf{B_{2}}$ = $z_{1} \, \mathbf{a}_{1}+\left(z_{1} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{1} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8e) Ga I
$\mathbf{B_{3}}$ = $- \left(z_{1} - \frac{3}{4}\right) \, \mathbf{a}_{1}- z_{1} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{1} \,\mathbf{\hat{z}}$ (8e) Ga I
$\mathbf{B_{4}}$ = $- z_{1} \, \mathbf{a}_{1}- \left(z_{1} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{1} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8e) Ga I
$\mathbf{B_{5}}$ = $\left(z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (8e) Ga II
$\mathbf{B_{6}}$ = $z_{2} \, \mathbf{a}_{1}+\left(z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8e) Ga II
$\mathbf{B_{7}}$ = $- \left(z_{2} - \frac{3}{4}\right) \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ (8e) Ga II
$\mathbf{B_{8}}$ = $- z_{2} \, \mathbf{a}_{1}- \left(z_{2} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8e) Ga II
$\mathbf{B_{9}}$ = $\left(z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (8e) Hf I
$\mathbf{B_{10}}$ = $z_{3} \, \mathbf{a}_{1}+\left(z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c \left(z_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8e) Hf I
$\mathbf{B_{11}}$ = $- \left(z_{3} - \frac{3}{4}\right) \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (8e) Hf I
$\mathbf{B_{12}}$ = $- z_{3} \, \mathbf{a}_{1}- \left(z_{3} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8e) Hf I

References

  • K. Schubert, H. G. Meissner, M. Pötzschke, W. Rossteutscher, and E. Stolz, Einige Strukturdaten metallischer Phasen (7), Naturwissenschaften 49, 57 (1962), doi:10.1007/BF00595382.

Found in

  • P. Villars and L. Calvert, Pearson's Handbook of Crystallographic Data for Intermetallic Phases (ASM International, Materials Park, OH, 1991), 2nd edn.

Prototype Generator

aflow --proto=A2B_tI24_141_2e_e --params=$a,c/a,z_{1},z_{2},z_{3}$

Species:

Running:

Output: