AFLOW Prototype: A2B_tP6_129_ac_c-001
This structure originally had the label A2B_tP6_129_ac_c. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/YG4M
or
https://aflow.org/p/A2B_tP6_129_ac_c-001
or
PDF Version
Prototype | Cu$_{2}$Sb |
AFLOW prototype label | A2B_tP6_129_ac_c-001 |
Strukturbericht designation | $C38$ |
ICSD | 42323 |
Pearson symbol | tP6 |
Space group number | 129 |
Space group symbol | $P4/nmm$ |
AFLOW prototype command |
aflow --proto=A2B_tP6_129_ac_c-001
--params=$a, \allowbreak c/a, \allowbreak z_{2}, \allowbreak z_{3}$ |
As$_{2}$Th, As$_{2}$U, Bi$_{2}$Th, Bi$_{2}$U, Cr$_{2}$As, Cu$_{2}$As, Mn$_{2}$As, Mn$_{2}$Sb, O$_{2}$Gd, Pu$_{2}$U, Sb$_{2}$Hf, Sb$_{2}$Th, Sb$_{2}$U, Se$_{2}$Ce, Se$_{2}$Ho, Te$_{2}$Ce, Te$_{2}$La, Te$_{2}$U, S$_{2}$Yb, AlGeMn, AlFeAs, AsCuMg, AsKMn, GeNbSb, KMgP, SnTeU
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ | (2a) | Cu I |
$\mathbf{B_{2}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}$ | (2a) | Cu I |
$\mathbf{B_{3}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ | (2c) | Cu II |
$\mathbf{B_{4}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ | (2c) | Cu II |
$\mathbf{B_{5}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (2c) | Sb I |
$\mathbf{B_{6}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ | (2c) | Sb I |