AFLOW Prototype: A3B16C20D3_mC168_15_ef_8f_10f_ef-001
This structure originally had the label A3B16C20D3_mC168_15_ef_8f_10f_ef. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/VXAE
or
https://aflow.org/p/A3B16C20D3_mC168_15_ef_8f_10f_ef-001
or
PDF Version
Prototype | Cd$_{3}$H$_{16}$O$_{20}$S$_{3}$ |
AFLOW prototype label | A3B16C20D3_mC168_15_ef_8f_10f_ef-001 |
Strukturbericht designation | $H4_{20}$ |
ICSD | 24400 |
Pearson symbol | mC168 |
Space group number | 15 |
Space group symbol | $C2/c$ |
AFLOW prototype command |
aflow --proto=A3B16C20D3_mC168_15_ef_8f_10f_ef-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak y_{1}, \allowbreak y_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}, \allowbreak x_{12}, \allowbreak y_{12}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak y_{13}, \allowbreak z_{13}, \allowbreak x_{14}, \allowbreak y_{14}, \allowbreak z_{14}, \allowbreak x_{15}, \allowbreak y_{15}, \allowbreak z_{15}, \allowbreak x_{16}, \allowbreak y_{16}, \allowbreak z_{16}, \allowbreak x_{17}, \allowbreak y_{17}, \allowbreak z_{17}, \allowbreak x_{18}, \allowbreak y_{18}, \allowbreak z_{18}, \allowbreak x_{19}, \allowbreak y_{19}, \allowbreak z_{19}, \allowbreak x_{20}, \allowbreak y_{20}, \allowbreak z_{20}, \allowbreak x_{21}, \allowbreak y_{21}, \allowbreak z_{21}, \allowbreak x_{22}, \allowbreak y_{22}, \allowbreak z_{22}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $- y_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}c \cos{\beta} \,\mathbf{\hat{x}}+b y_{1} \,\mathbf{\hat{y}}+\frac{1}{4}c \sin{\beta} \,\mathbf{\hat{z}}$ | (4e) | Cd I |
$\mathbf{B_{2}}$ | = | $y_{1} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}c \cos{\beta} \,\mathbf{\hat{x}}- b y_{1} \,\mathbf{\hat{y}}+\frac{3}{4}c \sin{\beta} \,\mathbf{\hat{z}}$ | (4e) | Cd I |
$\mathbf{B_{3}}$ | = | $- y_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}c \cos{\beta} \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}+\frac{1}{4}c \sin{\beta} \,\mathbf{\hat{z}}$ | (4e) | S I |
$\mathbf{B_{4}}$ | = | $y_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}c \cos{\beta} \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}+\frac{3}{4}c \sin{\beta} \,\mathbf{\hat{z}}$ | (4e) | S I |
$\mathbf{B_{5}}$ | = | $\left(x_{3} - y_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + y_{3}\right) \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $\left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | Cd II |
$\mathbf{B_{6}}$ | = | $- \left(x_{3} + y_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \left(a x_{3} + c \left(z_{3} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | Cd II |
$\mathbf{B_{7}}$ | = | $- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} + y_{3}\right) \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $- \left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}- c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | Cd II |
$\mathbf{B_{8}}$ | = | $\left(x_{3} + y_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} - y_{3}\right) \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{3} + c \left(z_{3} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | Cd II |
$\mathbf{B_{9}}$ | = | $\left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + y_{4}\right) \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $\left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | H I |
$\mathbf{B_{10}}$ | = | $- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \left(a x_{4} + c \left(z_{4} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | H I |
$\mathbf{B_{11}}$ | = | $- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $- \left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}- c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | H I |
$\mathbf{B_{12}}$ | = | $\left(x_{4} + y_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{4} + c \left(z_{4} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | H I |
$\mathbf{B_{13}}$ | = | $\left(x_{5} - y_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5}\right) \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ | = | $\left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}+c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | H II |
$\mathbf{B_{14}}$ | = | $- \left(x_{5} + y_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{2}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \left(a x_{5} + c \left(z_{5} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}- c \left(z_{5} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | H II |
$\mathbf{B_{15}}$ | = | $- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5}\right) \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ | = | $- \left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}- c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | H II |
$\mathbf{B_{16}}$ | = | $\left(x_{5} + y_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5}\right) \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{5} + c \left(z_{5} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | H II |
$\mathbf{B_{17}}$ | = | $\left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + y_{6}\right) \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $\left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}+c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | H III |
$\mathbf{B_{18}}$ | = | $- \left(x_{6} + y_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \left(a x_{6} + c \left(z_{6} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | H III |
$\mathbf{B_{19}}$ | = | $- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} + y_{6}\right) \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ | = | $- \left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}- c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | H III |
$\mathbf{B_{20}}$ | = | $\left(x_{6} + y_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{6} + c \left(z_{6} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | H III |
$\mathbf{B_{21}}$ | = | $\left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + y_{7}\right) \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ | = | $\left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}+c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | H IV |
$\mathbf{B_{22}}$ | = | $- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \left(a x_{7} + c \left(z_{7} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}- c \left(z_{7} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | H IV |
$\mathbf{B_{23}}$ | = | $- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ | = | $- \left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}- c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | H IV |
$\mathbf{B_{24}}$ | = | $\left(x_{7} + y_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{7} + c \left(z_{7} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | H IV |
$\mathbf{B_{25}}$ | = | $\left(x_{8} - y_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} + y_{8}\right) \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $\left(a x_{8} + c z_{8} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{8} \,\mathbf{\hat{y}}+c z_{8} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | H V |
$\mathbf{B_{26}}$ | = | $- \left(x_{8} + y_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{2}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \left(a x_{8} + c \left(z_{8} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{8} \,\mathbf{\hat{y}}- c \left(z_{8} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | H V |
$\mathbf{B_{27}}$ | = | $- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} + y_{8}\right) \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ | = | $- \left(a x_{8} + c z_{8} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{8} \,\mathbf{\hat{y}}- c z_{8} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | H V |
$\mathbf{B_{28}}$ | = | $\left(x_{8} + y_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} - y_{8}\right) \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{8} + c \left(z_{8} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | H V |
$\mathbf{B_{29}}$ | = | $\left(x_{9} - y_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} + y_{9}\right) \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ | = | $\left(a x_{9} + c z_{9} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}+c z_{9} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | H VI |
$\mathbf{B_{30}}$ | = | $- \left(x_{9} + y_{9}\right) \, \mathbf{a}_{1}- \left(x_{9} - y_{9}\right) \, \mathbf{a}_{2}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \left(a x_{9} + c \left(z_{9} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}- c \left(z_{9} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | H VI |
$\mathbf{B_{31}}$ | = | $- \left(x_{9} - y_{9}\right) \, \mathbf{a}_{1}- \left(x_{9} + y_{9}\right) \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ | = | $- \left(a x_{9} + c z_{9} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{9} \,\mathbf{\hat{y}}- c z_{9} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | H VI |
$\mathbf{B_{32}}$ | = | $\left(x_{9} + y_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} - y_{9}\right) \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{9} + c \left(z_{9} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | H VI |
$\mathbf{B_{33}}$ | = | $\left(x_{10} - y_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} + y_{10}\right) \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ | = | $\left(a x_{10} + c z_{10} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}+c z_{10} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | H VII |
$\mathbf{B_{34}}$ | = | $- \left(x_{10} + y_{10}\right) \, \mathbf{a}_{1}- \left(x_{10} - y_{10}\right) \, \mathbf{a}_{2}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \left(a x_{10} + c \left(z_{10} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}- c \left(z_{10} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | H VII |
$\mathbf{B_{35}}$ | = | $- \left(x_{10} - y_{10}\right) \, \mathbf{a}_{1}- \left(x_{10} + y_{10}\right) \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ | = | $- \left(a x_{10} + c z_{10} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{10} \,\mathbf{\hat{y}}- c z_{10} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | H VII |
$\mathbf{B_{36}}$ | = | $\left(x_{10} + y_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} - y_{10}\right) \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{10} + c \left(z_{10} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | H VII |
$\mathbf{B_{37}}$ | = | $\left(x_{11} - y_{11}\right) \, \mathbf{a}_{1}+\left(x_{11} + y_{11}\right) \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ | = | $\left(a x_{11} + c z_{11} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{11} \,\mathbf{\hat{y}}+c z_{11} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | H VIII |
$\mathbf{B_{38}}$ | = | $- \left(x_{11} + y_{11}\right) \, \mathbf{a}_{1}- \left(x_{11} - y_{11}\right) \, \mathbf{a}_{2}- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \left(a x_{11} + c \left(z_{11} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{11} \,\mathbf{\hat{y}}- c \left(z_{11} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | H VIII |
$\mathbf{B_{39}}$ | = | $- \left(x_{11} - y_{11}\right) \, \mathbf{a}_{1}- \left(x_{11} + y_{11}\right) \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ | = | $- \left(a x_{11} + c z_{11} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{11} \,\mathbf{\hat{y}}- c z_{11} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | H VIII |
$\mathbf{B_{40}}$ | = | $\left(x_{11} + y_{11}\right) \, \mathbf{a}_{1}+\left(x_{11} - y_{11}\right) \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{11} + c \left(z_{11} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | H VIII |
$\mathbf{B_{41}}$ | = | $\left(x_{12} - y_{12}\right) \, \mathbf{a}_{1}+\left(x_{12} + y_{12}\right) \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ | = | $\left(a x_{12} + c z_{12} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{12} \,\mathbf{\hat{y}}+c z_{12} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O I |
$\mathbf{B_{42}}$ | = | $- \left(x_{12} + y_{12}\right) \, \mathbf{a}_{1}- \left(x_{12} - y_{12}\right) \, \mathbf{a}_{2}- \left(z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \left(a x_{12} + c \left(z_{12} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{12} \,\mathbf{\hat{y}}- c \left(z_{12} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O I |
$\mathbf{B_{43}}$ | = | $- \left(x_{12} - y_{12}\right) \, \mathbf{a}_{1}- \left(x_{12} + y_{12}\right) \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ | = | $- \left(a x_{12} + c z_{12} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{12} \,\mathbf{\hat{y}}- c z_{12} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O I |
$\mathbf{B_{44}}$ | = | $\left(x_{12} + y_{12}\right) \, \mathbf{a}_{1}+\left(x_{12} - y_{12}\right) \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{12} + c \left(z_{12} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{12} \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O I |
$\mathbf{B_{45}}$ | = | $\left(x_{13} - y_{13}\right) \, \mathbf{a}_{1}+\left(x_{13} + y_{13}\right) \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ | = | $\left(a x_{13} + c z_{13} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{13} \,\mathbf{\hat{y}}+c z_{13} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O II |
$\mathbf{B_{46}}$ | = | $- \left(x_{13} + y_{13}\right) \, \mathbf{a}_{1}- \left(x_{13} - y_{13}\right) \, \mathbf{a}_{2}- \left(z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \left(a x_{13} + c \left(z_{13} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{13} \,\mathbf{\hat{y}}- c \left(z_{13} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O II |
$\mathbf{B_{47}}$ | = | $- \left(x_{13} - y_{13}\right) \, \mathbf{a}_{1}- \left(x_{13} + y_{13}\right) \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ | = | $- \left(a x_{13} + c z_{13} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{13} \,\mathbf{\hat{y}}- c z_{13} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O II |
$\mathbf{B_{48}}$ | = | $\left(x_{13} + y_{13}\right) \, \mathbf{a}_{1}+\left(x_{13} - y_{13}\right) \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{13} + c \left(z_{13} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{13} \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O II |
$\mathbf{B_{49}}$ | = | $\left(x_{14} - y_{14}\right) \, \mathbf{a}_{1}+\left(x_{14} + y_{14}\right) \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ | = | $\left(a x_{14} + c z_{14} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{14} \,\mathbf{\hat{y}}+c z_{14} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O III |
$\mathbf{B_{50}}$ | = | $- \left(x_{14} + y_{14}\right) \, \mathbf{a}_{1}- \left(x_{14} - y_{14}\right) \, \mathbf{a}_{2}- \left(z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \left(a x_{14} + c \left(z_{14} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{14} \,\mathbf{\hat{y}}- c \left(z_{14} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O III |
$\mathbf{B_{51}}$ | = | $- \left(x_{14} - y_{14}\right) \, \mathbf{a}_{1}- \left(x_{14} + y_{14}\right) \, \mathbf{a}_{2}- z_{14} \, \mathbf{a}_{3}$ | = | $- \left(a x_{14} + c z_{14} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{14} \,\mathbf{\hat{y}}- c z_{14} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O III |
$\mathbf{B_{52}}$ | = | $\left(x_{14} + y_{14}\right) \, \mathbf{a}_{1}+\left(x_{14} - y_{14}\right) \, \mathbf{a}_{2}+\left(z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{14} + c \left(z_{14} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{14} \,\mathbf{\hat{y}}+c \left(z_{14} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O III |
$\mathbf{B_{53}}$ | = | $\left(x_{15} - y_{15}\right) \, \mathbf{a}_{1}+\left(x_{15} + y_{15}\right) \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ | = | $\left(a x_{15} + c z_{15} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{15} \,\mathbf{\hat{y}}+c z_{15} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O IV |
$\mathbf{B_{54}}$ | = | $- \left(x_{15} + y_{15}\right) \, \mathbf{a}_{1}- \left(x_{15} - y_{15}\right) \, \mathbf{a}_{2}- \left(z_{15} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \left(a x_{15} + c \left(z_{15} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{15} \,\mathbf{\hat{y}}- c \left(z_{15} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O IV |
$\mathbf{B_{55}}$ | = | $- \left(x_{15} - y_{15}\right) \, \mathbf{a}_{1}- \left(x_{15} + y_{15}\right) \, \mathbf{a}_{2}- z_{15} \, \mathbf{a}_{3}$ | = | $- \left(a x_{15} + c z_{15} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{15} \,\mathbf{\hat{y}}- c z_{15} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O IV |
$\mathbf{B_{56}}$ | = | $\left(x_{15} + y_{15}\right) \, \mathbf{a}_{1}+\left(x_{15} - y_{15}\right) \, \mathbf{a}_{2}+\left(z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{15} + c \left(z_{15} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{15} \,\mathbf{\hat{y}}+c \left(z_{15} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O IV |
$\mathbf{B_{57}}$ | = | $\left(x_{16} - y_{16}\right) \, \mathbf{a}_{1}+\left(x_{16} + y_{16}\right) \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ | = | $\left(a x_{16} + c z_{16} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{16} \,\mathbf{\hat{y}}+c z_{16} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O V |
$\mathbf{B_{58}}$ | = | $- \left(x_{16} + y_{16}\right) \, \mathbf{a}_{1}- \left(x_{16} - y_{16}\right) \, \mathbf{a}_{2}- \left(z_{16} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \left(a x_{16} + c \left(z_{16} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{16} \,\mathbf{\hat{y}}- c \left(z_{16} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O V |
$\mathbf{B_{59}}$ | = | $- \left(x_{16} - y_{16}\right) \, \mathbf{a}_{1}- \left(x_{16} + y_{16}\right) \, \mathbf{a}_{2}- z_{16} \, \mathbf{a}_{3}$ | = | $- \left(a x_{16} + c z_{16} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{16} \,\mathbf{\hat{y}}- c z_{16} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O V |
$\mathbf{B_{60}}$ | = | $\left(x_{16} + y_{16}\right) \, \mathbf{a}_{1}+\left(x_{16} - y_{16}\right) \, \mathbf{a}_{2}+\left(z_{16} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{16} + c \left(z_{16} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{16} \,\mathbf{\hat{y}}+c \left(z_{16} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O V |
$\mathbf{B_{61}}$ | = | $\left(x_{17} - y_{17}\right) \, \mathbf{a}_{1}+\left(x_{17} + y_{17}\right) \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ | = | $\left(a x_{17} + c z_{17} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{17} \,\mathbf{\hat{y}}+c z_{17} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O VI |
$\mathbf{B_{62}}$ | = | $- \left(x_{17} + y_{17}\right) \, \mathbf{a}_{1}- \left(x_{17} - y_{17}\right) \, \mathbf{a}_{2}- \left(z_{17} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \left(a x_{17} + c \left(z_{17} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{17} \,\mathbf{\hat{y}}- c \left(z_{17} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O VI |
$\mathbf{B_{63}}$ | = | $- \left(x_{17} - y_{17}\right) \, \mathbf{a}_{1}- \left(x_{17} + y_{17}\right) \, \mathbf{a}_{2}- z_{17} \, \mathbf{a}_{3}$ | = | $- \left(a x_{17} + c z_{17} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{17} \,\mathbf{\hat{y}}- c z_{17} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O VI |
$\mathbf{B_{64}}$ | = | $\left(x_{17} + y_{17}\right) \, \mathbf{a}_{1}+\left(x_{17} - y_{17}\right) \, \mathbf{a}_{2}+\left(z_{17} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{17} + c \left(z_{17} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{17} \,\mathbf{\hat{y}}+c \left(z_{17} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O VI |
$\mathbf{B_{65}}$ | = | $\left(x_{18} - y_{18}\right) \, \mathbf{a}_{1}+\left(x_{18} + y_{18}\right) \, \mathbf{a}_{2}+z_{18} \, \mathbf{a}_{3}$ | = | $\left(a x_{18} + c z_{18} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{18} \,\mathbf{\hat{y}}+c z_{18} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O VII |
$\mathbf{B_{66}}$ | = | $- \left(x_{18} + y_{18}\right) \, \mathbf{a}_{1}- \left(x_{18} - y_{18}\right) \, \mathbf{a}_{2}- \left(z_{18} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \left(a x_{18} + c \left(z_{18} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{18} \,\mathbf{\hat{y}}- c \left(z_{18} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O VII |
$\mathbf{B_{67}}$ | = | $- \left(x_{18} - y_{18}\right) \, \mathbf{a}_{1}- \left(x_{18} + y_{18}\right) \, \mathbf{a}_{2}- z_{18} \, \mathbf{a}_{3}$ | = | $- \left(a x_{18} + c z_{18} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{18} \,\mathbf{\hat{y}}- c z_{18} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O VII |
$\mathbf{B_{68}}$ | = | $\left(x_{18} + y_{18}\right) \, \mathbf{a}_{1}+\left(x_{18} - y_{18}\right) \, \mathbf{a}_{2}+\left(z_{18} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{18} + c \left(z_{18} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{18} \,\mathbf{\hat{y}}+c \left(z_{18} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O VII |
$\mathbf{B_{69}}$ | = | $\left(x_{19} - y_{19}\right) \, \mathbf{a}_{1}+\left(x_{19} + y_{19}\right) \, \mathbf{a}_{2}+z_{19} \, \mathbf{a}_{3}$ | = | $\left(a x_{19} + c z_{19} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{19} \,\mathbf{\hat{y}}+c z_{19} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O VIII |
$\mathbf{B_{70}}$ | = | $- \left(x_{19} + y_{19}\right) \, \mathbf{a}_{1}- \left(x_{19} - y_{19}\right) \, \mathbf{a}_{2}- \left(z_{19} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \left(a x_{19} + c \left(z_{19} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{19} \,\mathbf{\hat{y}}- c \left(z_{19} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O VIII |
$\mathbf{B_{71}}$ | = | $- \left(x_{19} - y_{19}\right) \, \mathbf{a}_{1}- \left(x_{19} + y_{19}\right) \, \mathbf{a}_{2}- z_{19} \, \mathbf{a}_{3}$ | = | $- \left(a x_{19} + c z_{19} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{19} \,\mathbf{\hat{y}}- c z_{19} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O VIII |
$\mathbf{B_{72}}$ | = | $\left(x_{19} + y_{19}\right) \, \mathbf{a}_{1}+\left(x_{19} - y_{19}\right) \, \mathbf{a}_{2}+\left(z_{19} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{19} + c \left(z_{19} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{19} \,\mathbf{\hat{y}}+c \left(z_{19} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O VIII |
$\mathbf{B_{73}}$ | = | $\left(x_{20} - y_{20}\right) \, \mathbf{a}_{1}+\left(x_{20} + y_{20}\right) \, \mathbf{a}_{2}+z_{20} \, \mathbf{a}_{3}$ | = | $\left(a x_{20} + c z_{20} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{20} \,\mathbf{\hat{y}}+c z_{20} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O IX |
$\mathbf{B_{74}}$ | = | $- \left(x_{20} + y_{20}\right) \, \mathbf{a}_{1}- \left(x_{20} - y_{20}\right) \, \mathbf{a}_{2}- \left(z_{20} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \left(a x_{20} + c \left(z_{20} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{20} \,\mathbf{\hat{y}}- c \left(z_{20} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O IX |
$\mathbf{B_{75}}$ | = | $- \left(x_{20} - y_{20}\right) \, \mathbf{a}_{1}- \left(x_{20} + y_{20}\right) \, \mathbf{a}_{2}- z_{20} \, \mathbf{a}_{3}$ | = | $- \left(a x_{20} + c z_{20} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{20} \,\mathbf{\hat{y}}- c z_{20} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O IX |
$\mathbf{B_{76}}$ | = | $\left(x_{20} + y_{20}\right) \, \mathbf{a}_{1}+\left(x_{20} - y_{20}\right) \, \mathbf{a}_{2}+\left(z_{20} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{20} + c \left(z_{20} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{20} \,\mathbf{\hat{y}}+c \left(z_{20} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O IX |
$\mathbf{B_{77}}$ | = | $\left(x_{21} - y_{21}\right) \, \mathbf{a}_{1}+\left(x_{21} + y_{21}\right) \, \mathbf{a}_{2}+z_{21} \, \mathbf{a}_{3}$ | = | $\left(a x_{21} + c z_{21} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{21} \,\mathbf{\hat{y}}+c z_{21} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O X |
$\mathbf{B_{78}}$ | = | $- \left(x_{21} + y_{21}\right) \, \mathbf{a}_{1}- \left(x_{21} - y_{21}\right) \, \mathbf{a}_{2}- \left(z_{21} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \left(a x_{21} + c \left(z_{21} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{21} \,\mathbf{\hat{y}}- c \left(z_{21} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O X |
$\mathbf{B_{79}}$ | = | $- \left(x_{21} - y_{21}\right) \, \mathbf{a}_{1}- \left(x_{21} + y_{21}\right) \, \mathbf{a}_{2}- z_{21} \, \mathbf{a}_{3}$ | = | $- \left(a x_{21} + c z_{21} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{21} \,\mathbf{\hat{y}}- c z_{21} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O X |
$\mathbf{B_{80}}$ | = | $\left(x_{21} + y_{21}\right) \, \mathbf{a}_{1}+\left(x_{21} - y_{21}\right) \, \mathbf{a}_{2}+\left(z_{21} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{21} + c \left(z_{21} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{21} \,\mathbf{\hat{y}}+c \left(z_{21} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | O X |
$\mathbf{B_{81}}$ | = | $\left(x_{22} - y_{22}\right) \, \mathbf{a}_{1}+\left(x_{22} + y_{22}\right) \, \mathbf{a}_{2}+z_{22} \, \mathbf{a}_{3}$ | = | $\left(a x_{22} + c z_{22} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{22} \,\mathbf{\hat{y}}+c z_{22} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | S II |
$\mathbf{B_{82}}$ | = | $- \left(x_{22} + y_{22}\right) \, \mathbf{a}_{1}- \left(x_{22} - y_{22}\right) \, \mathbf{a}_{2}- \left(z_{22} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \left(a x_{22} + c \left(z_{22} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{22} \,\mathbf{\hat{y}}- c \left(z_{22} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | S II |
$\mathbf{B_{83}}$ | = | $- \left(x_{22} - y_{22}\right) \, \mathbf{a}_{1}- \left(x_{22} + y_{22}\right) \, \mathbf{a}_{2}- z_{22} \, \mathbf{a}_{3}$ | = | $- \left(a x_{22} + c z_{22} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{22} \,\mathbf{\hat{y}}- c z_{22} \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | S II |
$\mathbf{B_{84}}$ | = | $\left(x_{22} + y_{22}\right) \, \mathbf{a}_{1}+\left(x_{22} - y_{22}\right) \, \mathbf{a}_{2}+\left(z_{22} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\left(a x_{22} + c \left(z_{22} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{22} \,\mathbf{\hat{y}}+c \left(z_{22} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ | (8f) | S II |