AFLOW Prototype: A3B2C2_oI56_74_fhi_2ei_j-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/EXRV
or
https://aflow.org/p/A3B2C2_oI56_74_fhi_2ei_j-001
or
PDF Version
Prototype | Hg$_{3}$I$_{2}$S$_{2}$ |
AFLOW prototype label | A3B2C2_oI56_74_fhi_2ei_j-001 |
ICSD | 411154 |
Pearson symbol | oI56 |
Space group number | 74 |
Space group symbol | $Imma$ |
AFLOW prototype command |
aflow --proto=A3B2C2_oI56_74_fhi_2ei_j-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}$ |
Hg$_{3}$Se$_{2}$I$_{2}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\left(z_{1} + \frac{1}{4}\right) \, \mathbf{a}_{1}+z_{1} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ | (4e) | I I |
$\mathbf{B_{2}}$ | = | $- \left(z_{1} - \frac{3}{4}\right) \, \mathbf{a}_{1}- z_{1} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{1} \,\mathbf{\hat{z}}$ | (4e) | I I |
$\mathbf{B_{3}}$ | = | $\left(z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ | (4e) | I II |
$\mathbf{B_{4}}$ | = | $- \left(z_{2} - \frac{3}{4}\right) \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ | (4e) | I II |
$\mathbf{B_{5}}$ | = | $x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}$ | (8f) | Hg I |
$\mathbf{B_{6}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}$ | (8f) | Hg I |
$\mathbf{B_{7}}$ | = | $- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}$ | (8f) | Hg I |
$\mathbf{B_{8}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}$ | (8f) | Hg I |
$\mathbf{B_{9}}$ | = | $\left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ | = | $b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (8h) | Hg II |
$\mathbf{B_{10}}$ | = | $\left(- y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- b \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (8h) | Hg II |
$\mathbf{B_{11}}$ | = | $\left(y_{4} - z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $b \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (8h) | Hg II |
$\mathbf{B_{12}}$ | = | $- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ | = | $- b y_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (8h) | Hg II |
$\mathbf{B_{13}}$ | = | $\left(z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (8i) | Hg III |
$\mathbf{B_{14}}$ | = | $\left(z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (8i) | Hg III |
$\mathbf{B_{15}}$ | = | $- \left(z_{5} - \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{5} + z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ | (8i) | Hg III |
$\mathbf{B_{16}}$ | = | $- \left(z_{5} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{5} - z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ | (8i) | Hg III |
$\mathbf{B_{17}}$ | = | $\left(z_{6} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $a x_{6} \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (8i) | I III |
$\mathbf{B_{18}}$ | = | $\left(z_{6} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{6} - z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $- a x_{6} \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (8i) | I III |
$\mathbf{B_{19}}$ | = | $- \left(z_{6} - \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{6} + z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $- a x_{6} \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ | (8i) | I III |
$\mathbf{B_{20}}$ | = | $- \left(z_{6} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{6} - z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $a x_{6} \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ | (8i) | I III |
$\mathbf{B_{21}}$ | = | $\left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7}\right) \, \mathbf{a}_{3}$ | = | $a x_{7} \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (16j) | S I |
$\mathbf{B_{22}}$ | = | $\left(- y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{7} \,\mathbf{\hat{x}}- b \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (16j) | S I |
$\mathbf{B_{23}}$ | = | $\left(y_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(- x_{7} + y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{7} \,\mathbf{\hat{x}}+b \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ | (16j) | S I |
$\mathbf{B_{24}}$ | = | $- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{3}$ | = | $a x_{7} \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ | (16j) | S I |
$\mathbf{B_{25}}$ | = | $- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{3}$ | = | $- a x_{7} \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ | (16j) | S I |
$\mathbf{B_{26}}$ | = | $\left(y_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{7} \,\mathbf{\hat{x}}+b \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ | (16j) | S I |
$\mathbf{B_{27}}$ | = | $\left(- y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{7} \,\mathbf{\hat{x}}- b \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (16j) | S I |
$\mathbf{B_{28}}$ | = | $\left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{3}$ | = | $- a x_{7} \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (16j) | S I |