Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B2C8_hR13_166_ac_c_ch-002

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/7UDV
or https://aflow.org/p/A3B2C8_hR13_166_ac_c_ch-002
or PDF Version

Ba$_{3}$Cr$_{2}$O$_{8}$ Structure: A3B2C8_hR13_166_ac_c_ch-002

Picture of Structure; Click for Big Picture
Prototype Ba$_{3}$Cr$_{2}$O$_{8}$
AFLOW prototype label A3B2C8_hR13_166_ac_c_ch-002
ICSD 159409
Pearson symbol hR13
Space group number 166
Space group symbol $R\overline{3}m$
AFLOW prototype command aflow --proto=A3B2C8_hR13_166_ac_c_ch-002
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak z_{5}$

Other compounds with this structure

Sr$_{3}$Cr$_{2}$O$_{8}$


  • This is the ternary version of the $D8_{5}$ (Fe$_{7}$W$_{6}$) structure. The structure given by (Nakajima, 2008) does not appear in the ICSD. We give the ICSD entry for the structure determined by (Aczel, 2008).
  • Hexagonal settings of this structure can be obtained with the option --hex.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{\sqrt{3}}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Ba I
$\mathbf{B_{2}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $c x_{2} \,\mathbf{\hat{z}}$ (2c) Ba II
$\mathbf{B_{3}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- c x_{2} \,\mathbf{\hat{z}}$ (2c) Ba II
$\mathbf{B_{4}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $c x_{3} \,\mathbf{\hat{z}}$ (2c) Cr I
$\mathbf{B_{5}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- c x_{3} \,\mathbf{\hat{z}}$ (2c) Cr I
$\mathbf{B_{6}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $c x_{4} \,\mathbf{\hat{z}}$ (2c) O I
$\mathbf{B_{7}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $- c x_{4} \,\mathbf{\hat{z}}$ (2c) O I
$\mathbf{B_{8}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ (6h) O II
$\mathbf{B_{9}}$ = $z_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ (6h) O II
$\mathbf{B_{10}}$ = $x_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $- \frac{1}{\sqrt{3}}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ (6h) O II
$\mathbf{B_{11}}$ = $- z_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ (6h) O II
$\mathbf{B_{12}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ (6h) O II
$\mathbf{B_{13}}$ = $- x_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $\frac{1}{\sqrt{3}}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ (6h) O II

References

  • T. Nakajima, H. Mitamura, and Y. Ueda, Singlet Ground State and Magnetic Interactions in New Spin Dimer System Ba$_{3}$Cr$_{2}$O$_{8}$, J. Phys. Soc. Jpn. 75, 054706 (2006), doi:10.1143/JPSJ.75.054706.
  • A. A. Aczel, H. A. Dabkowska, P. R. Provencher, and G. M. Luke, Crystal growth and characterization of the new spin dimer system Ba$_{3}$Cr$_{2}$O$_{8}$, J. Crystal Growth 310, 870–873 (2008), doi:10.1016/j.jcrysgro.2007.12.030.

Found in

  • C. Xu, S. Zhai, L. Ye, X. Wu, and K. Yang, X-ray diffraction studies of Sr$_{3}$Cr$_{2}$O$_{8}$ and Ba$_{3}$Cr$_{2}$O$_{8}$ at high pressures, Solid State Commun. 200, 5–8 (2014), doi:10.1016/j.ssc.2014.09.010.

Prototype Generator

aflow --proto=A3B2C8_hR13_166_ac_c_ch --params=$a,c/a,x_{2},x_{3},x_{4},x_{5},z_{5}$

Species:

Running:

Output: