Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B2CD6_mC24_12_ag_h_c_ij-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/ZSJ2
or https://aflow.org/p/A3B2CD6_mC24_12_ag_h_c_ij-001
or PDF Version

Ag$_{3}$LiIr$_{2}$O$_{6}$ Structure: A3B2CD6_mC24_12_ag_h_c_ij-001

Picture of Structure; Click for Big Picture
Prototype Ag$_{3}$Ir$_{2}$LiO$_{6}$
AFLOW prototype label A3B2CD6_mC24_12_ag_h_c_ij-001
ICSD 10616
Pearson symbol mC24
Space group number 12
Space group symbol $C2/m$
AFLOW prototype command aflow --proto=A3B2CD6_mC24_12_ag_h_c_ij-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak y_{3}, \allowbreak y_{4}, \allowbreak x_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}$

Other compounds with this structure

Ag$_{3}$LiRu$_{2}$O$_{6}$,  Cu$_{3}$LiIr$_{2}$O$_{6}$,  H$_{3}$LiIr$_{2}$O$_{6}$


  • Some authors designate H$_{3}$LiIr$_{2}$O$_{6}$ as the prototype for this structure, but as it is much easier to locate silver atoms than hydrogen we use Ag$_{3}$LiIr$_{2}$O$_{6}$.
  • We have rearranged the primitive vectors of (Bette, 2019).

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \cos{\beta} \,\mathbf{\hat{x}}+c \sin{\beta} \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Ag I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \cos{\beta} \,\mathbf{\hat{x}}+\frac{1}{2}c \sin{\beta} \,\mathbf{\hat{z}}$ (2c) Li I
$\mathbf{B_{3}}$ = $- y_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}$ = $b y_{3} \,\mathbf{\hat{y}}$ (4g) Ag II
$\mathbf{B_{4}}$ = $y_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}$ = $- b y_{3} \,\mathbf{\hat{y}}$ (4g) Ag II
$\mathbf{B_{5}}$ = $- y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \cos{\beta} \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \sin{\beta} \,\mathbf{\hat{z}}$ (4h) Ir I
$\mathbf{B_{6}}$ = $y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \cos{\beta} \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \sin{\beta} \,\mathbf{\hat{z}}$ (4h) Ir I
$\mathbf{B_{7}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) O I
$\mathbf{B_{8}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- \left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) O I
$\mathbf{B_{9}}$ = $\left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + y_{6}\right) \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}+c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ (8j) O II
$\mathbf{B_{10}}$ = $- \left(x_{6} + y_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- \left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}- c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ (8j) O II
$\mathbf{B_{11}}$ = $- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} + y_{6}\right) \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- \left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}- c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ (8j) O II
$\mathbf{B_{12}}$ = $\left(x_{6} + y_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}+c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ (8j) O II

References

  • S. Bette, T. Takayama, V. Duppel, A. Poulain, H. Takagi, and R. E. Dinnebier, Crystal structure and stacking faults in the layered honeycomb, delafossite-type materials Ag$_{3}$LiIr$_{2}$O$_{6}$ and Ag$_{3}$LiRu$_{2}$O$_{6}$, Dalton Transactions 48, 9250–9259 (2019), doi:10.1039/c9dt01789e.

Prototype Generator

aflow --proto=A3B2CD6_mC24_12_ag_h_c_ij --params=$a,b/a,c/a,\beta,y_{3},y_{4},x_{5},z_{5},x_{6},y_{6},z_{6}$

Species:

Running:

Output: