Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B2_oF40_69_hm_fg-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/QBNS
or https://aflow.org/p/A3B2_oF40_69_hm_fg-001
or PDF Version

Rb$_{2}$P$_{3}$ Structure: A3B2_oF40_69_hm_fg-001

Picture of Structure; Click for Big Picture
Prototype P$_{3}$Rb$_{2}$
AFLOW prototype label A3B2_oF40_69_hm_fg-001
ICSD 65184
Pearson symbol oF40
Space group number 69
Space group symbol $Fmmm$
AFLOW prototype command aflow --proto=A3B2_oF40_69_hm_fg-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak y_{3}, \allowbreak y_{4}, \allowbreak z_{4}$

Other compounds with this structure

Cs$_{2}$P$_{3}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8f) Rb I
$\mathbf{B_{2}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (8f) Rb I
$\mathbf{B_{3}}$ = $- x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}$ (8g) Rb II
$\mathbf{B_{4}}$ = $x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}$ (8g) Rb II
$\mathbf{B_{5}}$ = $y_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+y_{3} \, \mathbf{a}_{3}$ = $b y_{3} \,\mathbf{\hat{y}}$ (8h) P I
$\mathbf{B_{6}}$ = $- y_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}- y_{3} \, \mathbf{a}_{3}$ = $- b y_{3} \,\mathbf{\hat{y}}$ (8h) P I
$\mathbf{B_{7}}$ = $\left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{2}+\left(y_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (16m) P II
$\mathbf{B_{8}}$ = $- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{1}+\left(y_{4} + z_{4}\right) \, \mathbf{a}_{2}- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $- b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (16m) P II
$\mathbf{B_{9}}$ = $\left(y_{4} - z_{4}\right) \, \mathbf{a}_{1}- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $b y_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (16m) P II
$\mathbf{B_{10}}$ = $- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(y_{4} - z_{4}\right) \, \mathbf{a}_{2}- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $- b y_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (16m) P II

References

  • H. G. von Schnering, T. Meyer, W. Hönle, W. Bauhofer, G. Kliche, T. Meyer, W. Schmettow, U. Hinze, W. Bauhofer, and G. Kliche, Zur Chemie und Strukturchemie von Phosphiden und Polyphosphiden. 46. Tetrarubidiumhexaphosphid und Tetracäsiumhexaphosphid: Darstellung, Struktur und Eigenschaften von Rb$_4$P$_6$ und Cs$_4$P$_6$, Z. Anorganische und Allgemeine Chemie 553, 261–279 (1987), doi:10.1002/zaac.19875531031.

Found in

  • P. Villars and L. Calvert, Pearson's Handbook of Crystallographic Data for Intermetallic Phases, vol. 4 (ASM International, Materials Park, OH, 1991), 2nd edn.

Prototype Generator

aflow --proto=A3B2_oF40_69_hm_fg --params=$a,b/a,c/a,x_{2},y_{3},y_{4},z_{4}$

Species:

Running:

Output: