Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B3C2_hP16_187_jk_jk_ak-001

This structure originally had the label A3B3C2_hP16_187_jk_jk_ck. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/XP6Z
or https://aflow.org/p/A3B3C2_hP16_187_jk_jk_ak-001
or PDF Version

Cr-233 Quasi-One-Dimensional Superconductor (K$_{2}$Cr$_{3}$As$_{3}$) Structure: A3B3C2_hP16_187_jk_jk_ak-001

Picture of Structure; Click for Big Picture
Prototype As$_{3}$Cr$_{3}$K$_{2}$
AFLOW prototype label A3B3C2_hP16_187_jk_jk_ak-001
ICSD 35909
Pearson symbol hP16
Space group number 187
Space group symbol $P\overline{6}m2$
AFLOW prototype command aflow --proto=A3B3C2_hP16_187_jk_jk_ak-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}$

Other compounds with this structure

Cs$_{2}$Cr$_{3}$As$_{3}$,  K$_{2}$Mo$_{3}$As$_{3}$,  Rb$_{2}$Cr$_{3}$As$_{3}$,  Rb$_{2}$Mo$_{3}$As$_{3}$


  • Cr-233 designates a class of structures of the form A$_{2}$B$_{2}$As$_{3}$, where the A atoms form one-dimensional chains. Several of these compounds have been found to superconduct at temperatures on the order of 5-10K.
  • The ICSD entry is for Rb$_{2}$Mo$_{3}$As$_{3}$ from (Zhao, 2020). The ICSD entry lists that as the prototype, but (Bao, 2015) obviously found K$_{2}$Cr$_{3}$As$_{3}$ earlier, so we continue using it as our prototype.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) K I
$\mathbf{B_{2}}$ = $x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}$ = $- \sqrt{3}a x_{2} \,\mathbf{\hat{y}}$ (3j) As I
$\mathbf{B_{3}}$ = $x_{2} \, \mathbf{a}_{1}+2 x_{2} \, \mathbf{a}_{2}$ = $\frac{3}{2}a x_{2} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}$ (3j) As I
$\mathbf{B_{4}}$ = $- 2 x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}$ = $- \frac{3}{2}a x_{2} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}$ (3j) As I
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}$ = $- \sqrt{3}a x_{3} \,\mathbf{\hat{y}}$ (3j) Cr I
$\mathbf{B_{6}}$ = $x_{3} \, \mathbf{a}_{1}+2 x_{3} \, \mathbf{a}_{2}$ = $\frac{3}{2}a x_{3} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}$ (3j) Cr I
$\mathbf{B_{7}}$ = $- 2 x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}$ = $- \frac{3}{2}a x_{3} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}$ (3j) Cr I
$\mathbf{B_{8}}$ = $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3k) As II
$\mathbf{B_{9}}$ = $x_{4} \, \mathbf{a}_{1}+2 x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3k) As II
$\mathbf{B_{10}}$ = $- 2 x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3k) As II
$\mathbf{B_{11}}$ = $x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{5} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3k) Cr II
$\mathbf{B_{12}}$ = $x_{5} \, \mathbf{a}_{1}+2 x_{5} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{5} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3k) Cr II
$\mathbf{B_{13}}$ = $- 2 x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{5} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3k) Cr II
$\mathbf{B_{14}}$ = $x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{6} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3k) K II
$\mathbf{B_{15}}$ = $x_{6} \, \mathbf{a}_{1}+2 x_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{6} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3k) K II
$\mathbf{B_{16}}$ = $- 2 x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{6} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3k) K II

References

  • J.-K. Bao, J.-Y. Liu, C.-W. Ma, Z.-H. Meng, Z.-T. Tang, Y.-L. Sun, H.-F. Zhai, H. Jiang, H. Bai, C.-M. Feng, Z.-A. Xu, and G.-H. Cao, Superconductivity in Quasi-One-Dimensional K$_{2}$Cr$_{3}$As$_{3}$ with Significant Electron Correlations, Phys. Rev. X 5, 011013 (2015), doi:10.1103/PhysRevX.5.011013.
  • K. Zhao, Q.-G. Mu, B.-B. Ruan, M.-H. Zhou, Q.-S. Yang, T. Liu, B.-J. Pan, S. Zhang, G.-F. Chen, and Z.-A. Ren, A New Quasi-One-Dimensional Ternary Molybdenum Pnictide Rb$_{2}$Mo$_{3}$As$_{3}$ with Superconducting Transition at 10.5K, Chin. Phys. Lett. 37, 097401 (2020), doi:10.1088/0256-307X/37/9/097401.

Found in

  • Q.-G. Mu, B.-B. Ruan, K. Zhao, B.-J. Pan, T. Liu, L. Shan, G.-F. Chen, and Z.-A. Ren, Superconductivity at 10.4 K in a novel quasi-one-dimensional ternary molybdenum pnictide K$_{2}$Mo$_{3}$As$_{3}$, Science Bulletin 63, 952–956 (2008), doi:10.1016/j.scib.2018.06.011.

Prototype Generator

aflow --proto=A3B3C2_hP16_187_jk_jk_ak --params=$a,c/a,x_{2},x_{3},x_{4},x_{5},x_{6}$

Species:

Running:

Output: