Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B4_cF56_227_ad_e-001

This structure originally had the label A3B4_cF56_227_ad_e. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/SV6X
or https://aflow.org/p/A3B4_cF56_227_ad_e-001
or PDF Version

Spinel (Co$_{3}$O$_{4}$, $D7_{2}$) Structure: A3B4_cF56_227_ad_e-001

Picture of Structure; Click for Big Picture
Prototype Co$_{3}$O$_{4}$
AFLOW prototype label A3B4_cF56_227_ad_e-001
Strukturbericht designation $D7_{2}$
Mineral name spinel
ICSD 24210
Pearson symbol cF56
Space group number 227
Space group symbol $Fd\overline{3}m$
AFLOW prototype command aflow --proto=A3B4_cF56_227_ad_e-001
--params=$a, \allowbreak x_{3}$

Other compounds with this structure

NiCo$_{2}$O$_{4}$,   Co3S$_{4}$,   NiCo$_{2}$S$_{4}$,   FeNi$_{2}$S$_{4}$


  • The binary $D7_{2}$ and ternary $H1_{1}$ spinel structures are for all intents and purposes identical. We could use $D7_{2}$ for the binary spinels and $H1_{1}$ for the ternaries, but historically this has not been the case. We dual-list this structure only to keep the historical record intact.
  • (Hahn, 1955) has an extensive list of ternary spinels and inverse spinels.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{8} \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+\frac{1}{8} \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (8a) Co I
$\mathbf{B_{2}}$ = $\frac{7}{8} \, \mathbf{a}_{1}+\frac{7}{8} \, \mathbf{a}_{2}+\frac{7}{8} \, \mathbf{a}_{3}$ = $\frac{7}{8}a \,\mathbf{\hat{x}}+\frac{7}{8}a \,\mathbf{\hat{y}}+\frac{7}{8}a \,\mathbf{\hat{z}}$ (8a) Co I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (16d) Co II
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (16d) Co II
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (16d) Co II
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (16d) Co II
$\mathbf{B_{7}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (32e) O I
$\mathbf{B_{8}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- \left(3 x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (32e) O I
$\mathbf{B_{9}}$ = $x_{3} \, \mathbf{a}_{1}- \left(3 x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32e) O I
$\mathbf{B_{10}}$ = $- \left(3 x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32e) O I
$\mathbf{B_{11}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\left(3 x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (32e) O I
$\mathbf{B_{12}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (32e) O I
$\mathbf{B_{13}}$ = $- x_{3} \, \mathbf{a}_{1}+\left(3 x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32e) O I
$\mathbf{B_{14}}$ = $\left(3 x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32e) O I

References

  • O. Knop, K. I. G. Reid, Sutarno, and Y. Nakagawa, Chalkogenides of the transition elements. VI. X-Ray, neutron, and magnetic investigation of the spinels Co$_{3}$O$_{4}$, NiCo$_{2}$O$_{4}$, Co$_{3}$S$_{4}$, and NiCo$_{2}$S$_{4}$, Can. J. Chem. 46, 3463–3476 (1968), doi:10.1139/v68-576.
  • H. Hahn, G. Frank, W. Klingler, A. D. Störger, and G. Störger, Chalkogenide. VI. Über Ternäre Chalkogenide des Aluminiums, Galliums und Indiums mit Zink, Cadmium und Quecksilber, Z. Anorganische und Allgemeine Chemie 279, 241–270 (1955), doi:10.1002/zaac.19552790502.

Prototype Generator

aflow --proto=A3B4_cF56_227_ad_e --params=$a,x_{3}$

Species:

Running:

Output: