AFLOW Prototype: A3B4_tP84_115_acef3g3j3k_6j6k-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/YL8L
or
https://aflow.org/p/A3B4_tP84_115_acef3g3j3k_6j6k-001
or
PDF Version
Prototype | Al$_{2}$O$_{3}$ |
AFLOW prototype label | A3B4_tP84_115_acef3g3j3k_6j6k-001 |
Mineral name | deltalumite |
ICSD | 40200 |
Pearson symbol | tP84 |
Space group number | 115 |
Space group symbol | $P\overline{4}m2$ |
AFLOW prototype command |
aflow --proto=A3B4_tP84_115_acef3g3j3k_6j6k-001
--params=$a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{6}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak z_{11}, \allowbreak x_{12}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak z_{13}, \allowbreak x_{14}, \allowbreak z_{14}, \allowbreak x_{15}, \allowbreak z_{15}, \allowbreak x_{16}, \allowbreak z_{16}, \allowbreak x_{17}, \allowbreak z_{17}, \allowbreak x_{18}, \allowbreak z_{18}, \allowbreak x_{19}, \allowbreak z_{19}, \allowbreak x_{20}, \allowbreak z_{20}, \allowbreak x_{21}, \allowbreak z_{21}, \allowbreak x_{22}, \allowbreak z_{22}, \allowbreak x_{23}, \allowbreak z_{23}, \allowbreak x_{24}, \allowbreak z_{24}, \allowbreak x_{25}, \allowbreak z_{25}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (1a) | Al I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (1c) | Al II |
$\mathbf{B_{3}}$ | = | $z_{3} \, \mathbf{a}_{3}$ | = | $c z_{3} \,\mathbf{\hat{z}}$ | (2e) | Al III |
$\mathbf{B_{4}}$ | = | $- z_{3} \, \mathbf{a}_{3}$ | = | $- c z_{3} \,\mathbf{\hat{z}}$ | (2e) | Al III |
$\mathbf{B_{5}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (2f) | Al IV |
$\mathbf{B_{6}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (2f) | Al IV |
$\mathbf{B_{7}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (2g) | Al V |
$\mathbf{B_{8}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{5} \,\mathbf{\hat{z}}$ | (2g) | Al V |
$\mathbf{B_{9}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (2g) | Al VI |
$\mathbf{B_{10}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{6} \,\mathbf{\hat{z}}$ | (2g) | Al VI |
$\mathbf{B_{11}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (2g) | Al VII |
$\mathbf{B_{12}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{7} \,\mathbf{\hat{z}}$ | (2g) | Al VII |
$\mathbf{B_{13}}$ | = | $x_{8} \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{3}$ | = | $a x_{8} \,\mathbf{\hat{x}}+c z_{8} \,\mathbf{\hat{z}}$ | (4j) | Al VIII |
$\mathbf{B_{14}}$ | = | $- x_{8} \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{3}$ | = | $- a x_{8} \,\mathbf{\hat{x}}+c z_{8} \,\mathbf{\hat{z}}$ | (4j) | Al VIII |
$\mathbf{B_{15}}$ | = | $- x_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ | = | $- a x_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ | (4j) | Al VIII |
$\mathbf{B_{16}}$ | = | $x_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ | = | $a x_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ | (4j) | Al VIII |
$\mathbf{B_{17}}$ | = | $x_{9} \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{3}$ | = | $a x_{9} \,\mathbf{\hat{x}}+c z_{9} \,\mathbf{\hat{z}}$ | (4j) | Al IX |
$\mathbf{B_{18}}$ | = | $- x_{9} \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{3}$ | = | $- a x_{9} \,\mathbf{\hat{x}}+c z_{9} \,\mathbf{\hat{z}}$ | (4j) | Al IX |
$\mathbf{B_{19}}$ | = | $- x_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ | = | $- a x_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ | (4j) | Al IX |
$\mathbf{B_{20}}$ | = | $x_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ | = | $a x_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ | (4j) | Al IX |
$\mathbf{B_{21}}$ | = | $x_{10} \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{3}$ | = | $a x_{10} \,\mathbf{\hat{x}}+c z_{10} \,\mathbf{\hat{z}}$ | (4j) | Al X |
$\mathbf{B_{22}}$ | = | $- x_{10} \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{3}$ | = | $- a x_{10} \,\mathbf{\hat{x}}+c z_{10} \,\mathbf{\hat{z}}$ | (4j) | Al X |
$\mathbf{B_{23}}$ | = | $- x_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ | = | $- a x_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ | (4j) | Al X |
$\mathbf{B_{24}}$ | = | $x_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ | = | $a x_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ | (4j) | Al X |
$\mathbf{B_{25}}$ | = | $x_{11} \, \mathbf{a}_{1}+z_{11} \, \mathbf{a}_{3}$ | = | $a x_{11} \,\mathbf{\hat{x}}+c z_{11} \,\mathbf{\hat{z}}$ | (4j) | O I |
$\mathbf{B_{26}}$ | = | $- x_{11} \, \mathbf{a}_{1}+z_{11} \, \mathbf{a}_{3}$ | = | $- a x_{11} \,\mathbf{\hat{x}}+c z_{11} \,\mathbf{\hat{z}}$ | (4j) | O I |
$\mathbf{B_{27}}$ | = | $- x_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ | = | $- a x_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ | (4j) | O I |
$\mathbf{B_{28}}$ | = | $x_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ | = | $a x_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ | (4j) | O I |
$\mathbf{B_{29}}$ | = | $x_{12} \, \mathbf{a}_{1}+z_{12} \, \mathbf{a}_{3}$ | = | $a x_{12} \,\mathbf{\hat{x}}+c z_{12} \,\mathbf{\hat{z}}$ | (4j) | O II |
$\mathbf{B_{30}}$ | = | $- x_{12} \, \mathbf{a}_{1}+z_{12} \, \mathbf{a}_{3}$ | = | $- a x_{12} \,\mathbf{\hat{x}}+c z_{12} \,\mathbf{\hat{z}}$ | (4j) | O II |
$\mathbf{B_{31}}$ | = | $- x_{12} \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ | = | $- a x_{12} \,\mathbf{\hat{y}}- c z_{12} \,\mathbf{\hat{z}}$ | (4j) | O II |
$\mathbf{B_{32}}$ | = | $x_{12} \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ | = | $a x_{12} \,\mathbf{\hat{y}}- c z_{12} \,\mathbf{\hat{z}}$ | (4j) | O II |
$\mathbf{B_{33}}$ | = | $x_{13} \, \mathbf{a}_{1}+z_{13} \, \mathbf{a}_{3}$ | = | $a x_{13} \,\mathbf{\hat{x}}+c z_{13} \,\mathbf{\hat{z}}$ | (4j) | O III |
$\mathbf{B_{34}}$ | = | $- x_{13} \, \mathbf{a}_{1}+z_{13} \, \mathbf{a}_{3}$ | = | $- a x_{13} \,\mathbf{\hat{x}}+c z_{13} \,\mathbf{\hat{z}}$ | (4j) | O III |
$\mathbf{B_{35}}$ | = | $- x_{13} \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ | = | $- a x_{13} \,\mathbf{\hat{y}}- c z_{13} \,\mathbf{\hat{z}}$ | (4j) | O III |
$\mathbf{B_{36}}$ | = | $x_{13} \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ | = | $a x_{13} \,\mathbf{\hat{y}}- c z_{13} \,\mathbf{\hat{z}}$ | (4j) | O III |
$\mathbf{B_{37}}$ | = | $x_{14} \, \mathbf{a}_{1}+z_{14} \, \mathbf{a}_{3}$ | = | $a x_{14} \,\mathbf{\hat{x}}+c z_{14} \,\mathbf{\hat{z}}$ | (4j) | O IV |
$\mathbf{B_{38}}$ | = | $- x_{14} \, \mathbf{a}_{1}+z_{14} \, \mathbf{a}_{3}$ | = | $- a x_{14} \,\mathbf{\hat{x}}+c z_{14} \,\mathbf{\hat{z}}$ | (4j) | O IV |
$\mathbf{B_{39}}$ | = | $- x_{14} \, \mathbf{a}_{2}- z_{14} \, \mathbf{a}_{3}$ | = | $- a x_{14} \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ | (4j) | O IV |
$\mathbf{B_{40}}$ | = | $x_{14} \, \mathbf{a}_{2}- z_{14} \, \mathbf{a}_{3}$ | = | $a x_{14} \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ | (4j) | O IV |
$\mathbf{B_{41}}$ | = | $x_{15} \, \mathbf{a}_{1}+z_{15} \, \mathbf{a}_{3}$ | = | $a x_{15} \,\mathbf{\hat{x}}+c z_{15} \,\mathbf{\hat{z}}$ | (4j) | O V |
$\mathbf{B_{42}}$ | = | $- x_{15} \, \mathbf{a}_{1}+z_{15} \, \mathbf{a}_{3}$ | = | $- a x_{15} \,\mathbf{\hat{x}}+c z_{15} \,\mathbf{\hat{z}}$ | (4j) | O V |
$\mathbf{B_{43}}$ | = | $- x_{15} \, \mathbf{a}_{2}- z_{15} \, \mathbf{a}_{3}$ | = | $- a x_{15} \,\mathbf{\hat{y}}- c z_{15} \,\mathbf{\hat{z}}$ | (4j) | O V |
$\mathbf{B_{44}}$ | = | $x_{15} \, \mathbf{a}_{2}- z_{15} \, \mathbf{a}_{3}$ | = | $a x_{15} \,\mathbf{\hat{y}}- c z_{15} \,\mathbf{\hat{z}}$ | (4j) | O V |
$\mathbf{B_{45}}$ | = | $x_{16} \, \mathbf{a}_{1}+z_{16} \, \mathbf{a}_{3}$ | = | $a x_{16} \,\mathbf{\hat{x}}+c z_{16} \,\mathbf{\hat{z}}$ | (4j) | O VI |
$\mathbf{B_{46}}$ | = | $- x_{16} \, \mathbf{a}_{1}+z_{16} \, \mathbf{a}_{3}$ | = | $- a x_{16} \,\mathbf{\hat{x}}+c z_{16} \,\mathbf{\hat{z}}$ | (4j) | O VI |
$\mathbf{B_{47}}$ | = | $- x_{16} \, \mathbf{a}_{2}- z_{16} \, \mathbf{a}_{3}$ | = | $- a x_{16} \,\mathbf{\hat{y}}- c z_{16} \,\mathbf{\hat{z}}$ | (4j) | O VI |
$\mathbf{B_{48}}$ | = | $x_{16} \, \mathbf{a}_{2}- z_{16} \, \mathbf{a}_{3}$ | = | $a x_{16} \,\mathbf{\hat{y}}- c z_{16} \,\mathbf{\hat{z}}$ | (4j) | O VI |
$\mathbf{B_{49}}$ | = | $x_{17} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ | = | $a x_{17} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{17} \,\mathbf{\hat{z}}$ | (4k) | Al XI |
$\mathbf{B_{50}}$ | = | $- x_{17} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ | = | $- a x_{17} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{17} \,\mathbf{\hat{z}}$ | (4k) | Al XI |
$\mathbf{B_{51}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- x_{17} \, \mathbf{a}_{2}- z_{17} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{17} \,\mathbf{\hat{y}}- c z_{17} \,\mathbf{\hat{z}}$ | (4k) | Al XI |
$\mathbf{B_{52}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+x_{17} \, \mathbf{a}_{2}- z_{17} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{17} \,\mathbf{\hat{y}}- c z_{17} \,\mathbf{\hat{z}}$ | (4k) | Al XI |
$\mathbf{B_{53}}$ | = | $x_{18} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{18} \, \mathbf{a}_{3}$ | = | $a x_{18} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{18} \,\mathbf{\hat{z}}$ | (4k) | Al XII |
$\mathbf{B_{54}}$ | = | $- x_{18} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{18} \, \mathbf{a}_{3}$ | = | $- a x_{18} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{18} \,\mathbf{\hat{z}}$ | (4k) | Al XII |
$\mathbf{B_{55}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- x_{18} \, \mathbf{a}_{2}- z_{18} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{18} \,\mathbf{\hat{y}}- c z_{18} \,\mathbf{\hat{z}}$ | (4k) | Al XII |
$\mathbf{B_{56}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+x_{18} \, \mathbf{a}_{2}- z_{18} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{18} \,\mathbf{\hat{y}}- c z_{18} \,\mathbf{\hat{z}}$ | (4k) | Al XII |
$\mathbf{B_{57}}$ | = | $x_{19} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{19} \, \mathbf{a}_{3}$ | = | $a x_{19} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{19} \,\mathbf{\hat{z}}$ | (4k) | Al XIII |
$\mathbf{B_{58}}$ | = | $- x_{19} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{19} \, \mathbf{a}_{3}$ | = | $- a x_{19} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{19} \,\mathbf{\hat{z}}$ | (4k) | Al XIII |
$\mathbf{B_{59}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- x_{19} \, \mathbf{a}_{2}- z_{19} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{19} \,\mathbf{\hat{y}}- c z_{19} \,\mathbf{\hat{z}}$ | (4k) | Al XIII |
$\mathbf{B_{60}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+x_{19} \, \mathbf{a}_{2}- z_{19} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{19} \,\mathbf{\hat{y}}- c z_{19} \,\mathbf{\hat{z}}$ | (4k) | Al XIII |
$\mathbf{B_{61}}$ | = | $x_{20} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{20} \, \mathbf{a}_{3}$ | = | $a x_{20} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{20} \,\mathbf{\hat{z}}$ | (4k) | O VII |
$\mathbf{B_{62}}$ | = | $- x_{20} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{20} \, \mathbf{a}_{3}$ | = | $- a x_{20} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{20} \,\mathbf{\hat{z}}$ | (4k) | O VII |
$\mathbf{B_{63}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- x_{20} \, \mathbf{a}_{2}- z_{20} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{20} \,\mathbf{\hat{y}}- c z_{20} \,\mathbf{\hat{z}}$ | (4k) | O VII |
$\mathbf{B_{64}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+x_{20} \, \mathbf{a}_{2}- z_{20} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{20} \,\mathbf{\hat{y}}- c z_{20} \,\mathbf{\hat{z}}$ | (4k) | O VII |
$\mathbf{B_{65}}$ | = | $x_{21} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{21} \, \mathbf{a}_{3}$ | = | $a x_{21} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{21} \,\mathbf{\hat{z}}$ | (4k) | O VIII |
$\mathbf{B_{66}}$ | = | $- x_{21} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{21} \, \mathbf{a}_{3}$ | = | $- a x_{21} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{21} \,\mathbf{\hat{z}}$ | (4k) | O VIII |
$\mathbf{B_{67}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- x_{21} \, \mathbf{a}_{2}- z_{21} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{21} \,\mathbf{\hat{y}}- c z_{21} \,\mathbf{\hat{z}}$ | (4k) | O VIII |
$\mathbf{B_{68}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+x_{21} \, \mathbf{a}_{2}- z_{21} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{21} \,\mathbf{\hat{y}}- c z_{21} \,\mathbf{\hat{z}}$ | (4k) | O VIII |
$\mathbf{B_{69}}$ | = | $x_{22} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{22} \, \mathbf{a}_{3}$ | = | $a x_{22} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{22} \,\mathbf{\hat{z}}$ | (4k) | O IX |
$\mathbf{B_{70}}$ | = | $- x_{22} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{22} \, \mathbf{a}_{3}$ | = | $- a x_{22} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{22} \,\mathbf{\hat{z}}$ | (4k) | O IX |
$\mathbf{B_{71}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- x_{22} \, \mathbf{a}_{2}- z_{22} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{22} \,\mathbf{\hat{y}}- c z_{22} \,\mathbf{\hat{z}}$ | (4k) | O IX |
$\mathbf{B_{72}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+x_{22} \, \mathbf{a}_{2}- z_{22} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{22} \,\mathbf{\hat{y}}- c z_{22} \,\mathbf{\hat{z}}$ | (4k) | O IX |
$\mathbf{B_{73}}$ | = | $x_{23} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{23} \, \mathbf{a}_{3}$ | = | $a x_{23} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{23} \,\mathbf{\hat{z}}$ | (4k) | O X |
$\mathbf{B_{74}}$ | = | $- x_{23} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{23} \, \mathbf{a}_{3}$ | = | $- a x_{23} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{23} \,\mathbf{\hat{z}}$ | (4k) | O X |
$\mathbf{B_{75}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- x_{23} \, \mathbf{a}_{2}- z_{23} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{23} \,\mathbf{\hat{y}}- c z_{23} \,\mathbf{\hat{z}}$ | (4k) | O X |
$\mathbf{B_{76}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+x_{23} \, \mathbf{a}_{2}- z_{23} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{23} \,\mathbf{\hat{y}}- c z_{23} \,\mathbf{\hat{z}}$ | (4k) | O X |
$\mathbf{B_{77}}$ | = | $x_{24} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{24} \, \mathbf{a}_{3}$ | = | $a x_{24} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{24} \,\mathbf{\hat{z}}$ | (4k) | O XI |
$\mathbf{B_{78}}$ | = | $- x_{24} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{24} \, \mathbf{a}_{3}$ | = | $- a x_{24} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{24} \,\mathbf{\hat{z}}$ | (4k) | O XI |
$\mathbf{B_{79}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- x_{24} \, \mathbf{a}_{2}- z_{24} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{24} \,\mathbf{\hat{y}}- c z_{24} \,\mathbf{\hat{z}}$ | (4k) | O XI |
$\mathbf{B_{80}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+x_{24} \, \mathbf{a}_{2}- z_{24} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{24} \,\mathbf{\hat{y}}- c z_{24} \,\mathbf{\hat{z}}$ | (4k) | O XI |
$\mathbf{B_{81}}$ | = | $x_{25} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{25} \, \mathbf{a}_{3}$ | = | $a x_{25} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{25} \,\mathbf{\hat{z}}$ | (4k) | O XII |
$\mathbf{B_{82}}$ | = | $- x_{25} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{25} \, \mathbf{a}_{3}$ | = | $- a x_{25} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{25} \,\mathbf{\hat{z}}$ | (4k) | O XII |
$\mathbf{B_{83}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- x_{25} \, \mathbf{a}_{2}- z_{25} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{25} \,\mathbf{\hat{y}}- c z_{25} \,\mathbf{\hat{z}}$ | (4k) | O XII |
$\mathbf{B_{84}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+x_{25} \, \mathbf{a}_{2}- z_{25} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{25} \,\mathbf{\hat{y}}- c z_{25} \,\mathbf{\hat{z}}$ | (4k) | O XII |