Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B4_tP84_115_acef3g3j3k_6j6k-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/YL8L
or https://aflow.org/p/A3B4_tP84_115_acef3g3j3k_6j6k-001
or PDF Version

Deltalumite (δ-alumina, Al$_{2}$O$_{3}$) Structure: A3B4_tP84_115_acef3g3j3k_6j6k-001

Picture of Structure; Click for Big Picture
Prototype Al$_{2}$O$_{3}$
AFLOW prototype label A3B4_tP84_115_acef3g3j3k_6j6k-001
Mineral name deltalumite
ICSD 40200
Pearson symbol tP84
Space group number 115
Space group symbol $P\overline{4}m2$
AFLOW prototype command aflow --proto=A3B4_tP84_115_acef3g3j3k_6j6k-001
--params=$a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{6}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak z_{11}, \allowbreak x_{12}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak z_{13}, \allowbreak x_{14}, \allowbreak z_{14}, \allowbreak x_{15}, \allowbreak z_{15}, \allowbreak x_{16}, \allowbreak z_{16}, \allowbreak x_{17}, \allowbreak z_{17}, \allowbreak x_{18}, \allowbreak z_{18}, \allowbreak x_{19}, \allowbreak z_{19}, \allowbreak x_{20}, \allowbreak z_{20}, \allowbreak x_{21}, \allowbreak z_{21}, \allowbreak x_{22}, \allowbreak z_{22}, \allowbreak x_{23}, \allowbreak z_{23}, \allowbreak x_{24}, \allowbreak z_{24}, \allowbreak x_{25}, \allowbreak z_{25}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Al I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (1c) Al II
$\mathbf{B_{3}}$ = $z_{3} \, \mathbf{a}_{3}$ = $c z_{3} \,\mathbf{\hat{z}}$ (2e) Al III
$\mathbf{B_{4}}$ = $- z_{3} \, \mathbf{a}_{3}$ = $- c z_{3} \,\mathbf{\hat{z}}$ (2e) Al III
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (2f) Al IV
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (2f) Al IV
$\mathbf{B_{7}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (2g) Al V
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{5} \,\mathbf{\hat{z}}$ (2g) Al V
$\mathbf{B_{9}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (2g) Al VI
$\mathbf{B_{10}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{6} \,\mathbf{\hat{z}}$ (2g) Al VI
$\mathbf{B_{11}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (2g) Al VII
$\mathbf{B_{12}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{7} \,\mathbf{\hat{z}}$ (2g) Al VII
$\mathbf{B_{13}}$ = $x_{8} \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+c z_{8} \,\mathbf{\hat{z}}$ (4j) Al VIII
$\mathbf{B_{14}}$ = $- x_{8} \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}+c z_{8} \,\mathbf{\hat{z}}$ (4j) Al VIII
$\mathbf{B_{15}}$ = $- x_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (4j) Al VIII
$\mathbf{B_{16}}$ = $x_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (4j) Al VIII
$\mathbf{B_{17}}$ = $x_{9} \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}+c z_{9} \,\mathbf{\hat{z}}$ (4j) Al IX
$\mathbf{B_{18}}$ = $- x_{9} \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}+c z_{9} \,\mathbf{\hat{z}}$ (4j) Al IX
$\mathbf{B_{19}}$ = $- x_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ (4j) Al IX
$\mathbf{B_{20}}$ = $x_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ (4j) Al IX
$\mathbf{B_{21}}$ = $x_{10} \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}+c z_{10} \,\mathbf{\hat{z}}$ (4j) Al X
$\mathbf{B_{22}}$ = $- x_{10} \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}+c z_{10} \,\mathbf{\hat{z}}$ (4j) Al X
$\mathbf{B_{23}}$ = $- x_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (4j) Al X
$\mathbf{B_{24}}$ = $x_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (4j) Al X
$\mathbf{B_{25}}$ = $x_{11} \, \mathbf{a}_{1}+z_{11} \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}+c z_{11} \,\mathbf{\hat{z}}$ (4j) O I
$\mathbf{B_{26}}$ = $- x_{11} \, \mathbf{a}_{1}+z_{11} \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}+c z_{11} \,\mathbf{\hat{z}}$ (4j) O I
$\mathbf{B_{27}}$ = $- x_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ (4j) O I
$\mathbf{B_{28}}$ = $x_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ (4j) O I
$\mathbf{B_{29}}$ = $x_{12} \, \mathbf{a}_{1}+z_{12} \, \mathbf{a}_{3}$ = $a x_{12} \,\mathbf{\hat{x}}+c z_{12} \,\mathbf{\hat{z}}$ (4j) O II
$\mathbf{B_{30}}$ = $- x_{12} \, \mathbf{a}_{1}+z_{12} \, \mathbf{a}_{3}$ = $- a x_{12} \,\mathbf{\hat{x}}+c z_{12} \,\mathbf{\hat{z}}$ (4j) O II
$\mathbf{B_{31}}$ = $- x_{12} \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ = $- a x_{12} \,\mathbf{\hat{y}}- c z_{12} \,\mathbf{\hat{z}}$ (4j) O II
$\mathbf{B_{32}}$ = $x_{12} \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ = $a x_{12} \,\mathbf{\hat{y}}- c z_{12} \,\mathbf{\hat{z}}$ (4j) O II
$\mathbf{B_{33}}$ = $x_{13} \, \mathbf{a}_{1}+z_{13} \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}+c z_{13} \,\mathbf{\hat{z}}$ (4j) O III
$\mathbf{B_{34}}$ = $- x_{13} \, \mathbf{a}_{1}+z_{13} \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}+c z_{13} \,\mathbf{\hat{z}}$ (4j) O III
$\mathbf{B_{35}}$ = $- x_{13} \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{y}}- c z_{13} \,\mathbf{\hat{z}}$ (4j) O III
$\mathbf{B_{36}}$ = $x_{13} \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{y}}- c z_{13} \,\mathbf{\hat{z}}$ (4j) O III
$\mathbf{B_{37}}$ = $x_{14} \, \mathbf{a}_{1}+z_{14} \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{x}}+c z_{14} \,\mathbf{\hat{z}}$ (4j) O IV
$\mathbf{B_{38}}$ = $- x_{14} \, \mathbf{a}_{1}+z_{14} \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{x}}+c z_{14} \,\mathbf{\hat{z}}$ (4j) O IV
$\mathbf{B_{39}}$ = $- x_{14} \, \mathbf{a}_{2}- z_{14} \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ (4j) O IV
$\mathbf{B_{40}}$ = $x_{14} \, \mathbf{a}_{2}- z_{14} \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ (4j) O IV
$\mathbf{B_{41}}$ = $x_{15} \, \mathbf{a}_{1}+z_{15} \, \mathbf{a}_{3}$ = $a x_{15} \,\mathbf{\hat{x}}+c z_{15} \,\mathbf{\hat{z}}$ (4j) O V
$\mathbf{B_{42}}$ = $- x_{15} \, \mathbf{a}_{1}+z_{15} \, \mathbf{a}_{3}$ = $- a x_{15} \,\mathbf{\hat{x}}+c z_{15} \,\mathbf{\hat{z}}$ (4j) O V
$\mathbf{B_{43}}$ = $- x_{15} \, \mathbf{a}_{2}- z_{15} \, \mathbf{a}_{3}$ = $- a x_{15} \,\mathbf{\hat{y}}- c z_{15} \,\mathbf{\hat{z}}$ (4j) O V
$\mathbf{B_{44}}$ = $x_{15} \, \mathbf{a}_{2}- z_{15} \, \mathbf{a}_{3}$ = $a x_{15} \,\mathbf{\hat{y}}- c z_{15} \,\mathbf{\hat{z}}$ (4j) O V
$\mathbf{B_{45}}$ = $x_{16} \, \mathbf{a}_{1}+z_{16} \, \mathbf{a}_{3}$ = $a x_{16} \,\mathbf{\hat{x}}+c z_{16} \,\mathbf{\hat{z}}$ (4j) O VI
$\mathbf{B_{46}}$ = $- x_{16} \, \mathbf{a}_{1}+z_{16} \, \mathbf{a}_{3}$ = $- a x_{16} \,\mathbf{\hat{x}}+c z_{16} \,\mathbf{\hat{z}}$ (4j) O VI
$\mathbf{B_{47}}$ = $- x_{16} \, \mathbf{a}_{2}- z_{16} \, \mathbf{a}_{3}$ = $- a x_{16} \,\mathbf{\hat{y}}- c z_{16} \,\mathbf{\hat{z}}$ (4j) O VI
$\mathbf{B_{48}}$ = $x_{16} \, \mathbf{a}_{2}- z_{16} \, \mathbf{a}_{3}$ = $a x_{16} \,\mathbf{\hat{y}}- c z_{16} \,\mathbf{\hat{z}}$ (4j) O VI
$\mathbf{B_{49}}$ = $x_{17} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $a x_{17} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{17} \,\mathbf{\hat{z}}$ (4k) Al XI
$\mathbf{B_{50}}$ = $- x_{17} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $- a x_{17} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{17} \,\mathbf{\hat{z}}$ (4k) Al XI
$\mathbf{B_{51}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- x_{17} \, \mathbf{a}_{2}- z_{17} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{17} \,\mathbf{\hat{y}}- c z_{17} \,\mathbf{\hat{z}}$ (4k) Al XI
$\mathbf{B_{52}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+x_{17} \, \mathbf{a}_{2}- z_{17} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{17} \,\mathbf{\hat{y}}- c z_{17} \,\mathbf{\hat{z}}$ (4k) Al XI
$\mathbf{B_{53}}$ = $x_{18} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{18} \, \mathbf{a}_{3}$ = $a x_{18} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{18} \,\mathbf{\hat{z}}$ (4k) Al XII
$\mathbf{B_{54}}$ = $- x_{18} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{18} \, \mathbf{a}_{3}$ = $- a x_{18} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{18} \,\mathbf{\hat{z}}$ (4k) Al XII
$\mathbf{B_{55}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- x_{18} \, \mathbf{a}_{2}- z_{18} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{18} \,\mathbf{\hat{y}}- c z_{18} \,\mathbf{\hat{z}}$ (4k) Al XII
$\mathbf{B_{56}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+x_{18} \, \mathbf{a}_{2}- z_{18} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{18} \,\mathbf{\hat{y}}- c z_{18} \,\mathbf{\hat{z}}$ (4k) Al XII
$\mathbf{B_{57}}$ = $x_{19} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{19} \, \mathbf{a}_{3}$ = $a x_{19} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{19} \,\mathbf{\hat{z}}$ (4k) Al XIII
$\mathbf{B_{58}}$ = $- x_{19} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{19} \, \mathbf{a}_{3}$ = $- a x_{19} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{19} \,\mathbf{\hat{z}}$ (4k) Al XIII
$\mathbf{B_{59}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- x_{19} \, \mathbf{a}_{2}- z_{19} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{19} \,\mathbf{\hat{y}}- c z_{19} \,\mathbf{\hat{z}}$ (4k) Al XIII
$\mathbf{B_{60}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+x_{19} \, \mathbf{a}_{2}- z_{19} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{19} \,\mathbf{\hat{y}}- c z_{19} \,\mathbf{\hat{z}}$ (4k) Al XIII
$\mathbf{B_{61}}$ = $x_{20} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{20} \, \mathbf{a}_{3}$ = $a x_{20} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{20} \,\mathbf{\hat{z}}$ (4k) O VII
$\mathbf{B_{62}}$ = $- x_{20} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{20} \, \mathbf{a}_{3}$ = $- a x_{20} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{20} \,\mathbf{\hat{z}}$ (4k) O VII
$\mathbf{B_{63}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- x_{20} \, \mathbf{a}_{2}- z_{20} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{20} \,\mathbf{\hat{y}}- c z_{20} \,\mathbf{\hat{z}}$ (4k) O VII
$\mathbf{B_{64}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+x_{20} \, \mathbf{a}_{2}- z_{20} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{20} \,\mathbf{\hat{y}}- c z_{20} \,\mathbf{\hat{z}}$ (4k) O VII
$\mathbf{B_{65}}$ = $x_{21} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{21} \, \mathbf{a}_{3}$ = $a x_{21} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{21} \,\mathbf{\hat{z}}$ (4k) O VIII
$\mathbf{B_{66}}$ = $- x_{21} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{21} \, \mathbf{a}_{3}$ = $- a x_{21} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{21} \,\mathbf{\hat{z}}$ (4k) O VIII
$\mathbf{B_{67}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- x_{21} \, \mathbf{a}_{2}- z_{21} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{21} \,\mathbf{\hat{y}}- c z_{21} \,\mathbf{\hat{z}}$ (4k) O VIII
$\mathbf{B_{68}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+x_{21} \, \mathbf{a}_{2}- z_{21} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{21} \,\mathbf{\hat{y}}- c z_{21} \,\mathbf{\hat{z}}$ (4k) O VIII
$\mathbf{B_{69}}$ = $x_{22} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{22} \, \mathbf{a}_{3}$ = $a x_{22} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{22} \,\mathbf{\hat{z}}$ (4k) O IX
$\mathbf{B_{70}}$ = $- x_{22} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{22} \, \mathbf{a}_{3}$ = $- a x_{22} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{22} \,\mathbf{\hat{z}}$ (4k) O IX
$\mathbf{B_{71}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- x_{22} \, \mathbf{a}_{2}- z_{22} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{22} \,\mathbf{\hat{y}}- c z_{22} \,\mathbf{\hat{z}}$ (4k) O IX
$\mathbf{B_{72}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+x_{22} \, \mathbf{a}_{2}- z_{22} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{22} \,\mathbf{\hat{y}}- c z_{22} \,\mathbf{\hat{z}}$ (4k) O IX
$\mathbf{B_{73}}$ = $x_{23} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{23} \, \mathbf{a}_{3}$ = $a x_{23} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{23} \,\mathbf{\hat{z}}$ (4k) O X
$\mathbf{B_{74}}$ = $- x_{23} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{23} \, \mathbf{a}_{3}$ = $- a x_{23} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{23} \,\mathbf{\hat{z}}$ (4k) O X
$\mathbf{B_{75}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- x_{23} \, \mathbf{a}_{2}- z_{23} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{23} \,\mathbf{\hat{y}}- c z_{23} \,\mathbf{\hat{z}}$ (4k) O X
$\mathbf{B_{76}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+x_{23} \, \mathbf{a}_{2}- z_{23} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{23} \,\mathbf{\hat{y}}- c z_{23} \,\mathbf{\hat{z}}$ (4k) O X
$\mathbf{B_{77}}$ = $x_{24} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{24} \, \mathbf{a}_{3}$ = $a x_{24} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{24} \,\mathbf{\hat{z}}$ (4k) O XI
$\mathbf{B_{78}}$ = $- x_{24} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{24} \, \mathbf{a}_{3}$ = $- a x_{24} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{24} \,\mathbf{\hat{z}}$ (4k) O XI
$\mathbf{B_{79}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- x_{24} \, \mathbf{a}_{2}- z_{24} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{24} \,\mathbf{\hat{y}}- c z_{24} \,\mathbf{\hat{z}}$ (4k) O XI
$\mathbf{B_{80}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+x_{24} \, \mathbf{a}_{2}- z_{24} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{24} \,\mathbf{\hat{y}}- c z_{24} \,\mathbf{\hat{z}}$ (4k) O XI
$\mathbf{B_{81}}$ = $x_{25} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{25} \, \mathbf{a}_{3}$ = $a x_{25} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{25} \,\mathbf{\hat{z}}$ (4k) O XII
$\mathbf{B_{82}}$ = $- x_{25} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{25} \, \mathbf{a}_{3}$ = $- a x_{25} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{25} \,\mathbf{\hat{z}}$ (4k) O XII
$\mathbf{B_{83}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- x_{25} \, \mathbf{a}_{2}- z_{25} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{25} \,\mathbf{\hat{y}}- c z_{25} \,\mathbf{\hat{z}}$ (4k) O XII
$\mathbf{B_{84}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+x_{25} \, \mathbf{a}_{2}- z_{25} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{25} \,\mathbf{\hat{y}}- c z_{25} \,\mathbf{\hat{z}}$ (4k) O XII

References

  • Y. Repelin and E. Husson, Etudes structurales d'alumines de transition. I-alumines gamma et delta, Mater. Res. Bull. 25, 611–621 (1990), doi:10.1016/0025-5408(90)90027-Y.

Found in

  • I. V. Pekov, I. P. Anikin, N. V. Chukanov, D. I. Belakovskiy, V. O. Yapaskurt, E. G. Sidorov, S. N. Britvin, and N. V. Zubkova, Deltalumite, a New Natural Modification of Alumina with a Spinel-Type Structure, Geol. Ore Deposits 62, 608–617 (2020), doi:10.1134/S1075701520070089. Translated from the Russian text: Zapiski Rossiiskogo Mineralogicheskogo Obshchestva 5, 45-58 (2019).

Prototype Generator

aflow --proto=A3B4_tP84_115_acef3g3j3k_6j6k --params=$a,c/a,z_{3},z_{4},z_{5},z_{6},z_{7},x_{8},z_{8},x_{9},z_{9},x_{10},z_{10},x_{11},z_{11},x_{12},z_{12},x_{13},z_{13},x_{14},z_{14},x_{15},z_{15},x_{16},z_{16},x_{17},z_{17},x_{18},z_{18},x_{19},z_{19},x_{20},z_{20},x_{21},z_{21},x_{22},z_{22},x_{23},z_{23},x_{24},z_{24},x_{25},z_{25}$

Species:

Running:

Output: