Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B5C2_oI40_72_aj_bfj_j-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/LD1K
or https://aflow.org/p/A3B5C2_oI40_72_aj_bfj_j-001
or PDF Version

U$_{2}$Co$_{3}$Si$_{5}$ Structure: A3B5C2_oI40_72_aj_bfj_j-001

Picture of Structure; Click for Big Picture
Prototype Co$_{3}$Si$_{5}$U$_{2}$
AFLOW prototype label A3B5C2_oI40_72_aj_bfj_j-001
ICSD 20930
Pearson symbol oI40
Space group number 72
Space group symbol $Ibam$
AFLOW prototype command aflow --proto=A3B5C2_oI40_72_aj_bfj_j-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak x_{6}, \allowbreak y_{6}$

Other compounds with this structure

Ce$_{2}$Co$_{3}$Si$_{5}$,  Ce$_{2}$Pt$_{3}$Si$_{5}$,  Ce$_{2}$Rh$_{3}$Ge$_{5}$,  Ce$_{2}$Ru$_{3}$Ge$_{5}$,  Dy$_{2}$Ni$_{3}$Si$_{5}$,  Gd$_{2}$Ru$_{3}$Ge$_{5}$,  Ho$_{2}$Ni$_{3}$Si$_{5}$,  La$_{2}$Ru$_{3}$Ge$_{5}$,  Li$_{2}$Ir$_{3}$Si$_{5}$,  Lu$_{2}$Ir$_{3}$Si$_{5}$,  Lu$_{2}$Ru$_{3}$Si$_{5}$,  Nd$_{2}$Ru$_{3}$Ge$_{5}$,  Pu$_{2}$Pt$_{3}$Si$_{5}$,  Tb$_{2}$Ni$_{3}$Si$_{5}$,  Tb$_{2}$Ru$_{3}$Ge$_{5}$,  Y$_{2}$Ni$_{3}$Si$_{5}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}$ = $\frac{1}{4}c \,\mathbf{\hat{z}}$ (4a) Co I
$\mathbf{B_{2}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}$ = $\frac{3}{4}c \,\mathbf{\hat{z}}$ (4a) Co I
$\mathbf{B_{3}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4b) Si I
$\mathbf{B_{4}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4b) Si I
$\mathbf{B_{5}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8f) Si II
$\mathbf{B_{6}}$ = $\frac{1}{4} \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{4}\right) \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8f) Si II
$\mathbf{B_{7}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- \left(x_{3} - \frac{3}{4}\right) \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (8f) Si II
$\mathbf{B_{8}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\left(x_{3} + \frac{3}{4}\right) \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (8f) Si II
$\mathbf{B_{9}}$ = $y_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\left(x_{4} + y_{4}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}$ (8j) Co II
$\mathbf{B_{10}}$ = $- y_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}$ (8j) Co II
$\mathbf{B_{11}}$ = $\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8j) Co II
$\mathbf{B_{12}}$ = $- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8j) Co II
$\mathbf{B_{13}}$ = $y_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+\left(x_{5} + y_{5}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}$ (8j) Si III
$\mathbf{B_{14}}$ = $- y_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- \left(x_{5} + y_{5}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}$ (8j) Si III
$\mathbf{B_{15}}$ = $\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8j) Si III
$\mathbf{B_{16}}$ = $- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8j) Si III
$\mathbf{B_{17}}$ = $y_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+\left(x_{6} + y_{6}\right) \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}$ (8j) U I
$\mathbf{B_{18}}$ = $- y_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- \left(x_{6} + y_{6}\right) \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}$ (8j) U I
$\mathbf{B_{19}}$ = $\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8j) U I
$\mathbf{B_{20}}$ = $- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8j) U I

References

  • L. G. Aksel'rud, Y. P. Yarmolyuk, and E. I. Gladyshevskii, Crystal structure of the compound U$_{2}$Co$_{3}$Si$_{5}$, Sov. Phys. Crystallogr. 22, 492–493 (1997).

Prototype Generator

aflow --proto=A3B5C2_oI40_72_aj_bfj_j --params=$a,b/a,c/a,x_{3},x_{4},y_{4},x_{5},y_{5},x_{6},y_{6}$

Species:

Running:

Output: