AFLOW Prototype: A3B5_oC16_65_ah_bej-001
This structure originally had the label A3B5_oC16_65_ah_bej. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/36DL
or
https://aflow.org/p/A3B5_oC16_65_ah_bej-001
or
PDF Version
Prototype | Ga$_{3}$Pt$_{5}$ |
AFLOW prototype label | A3B5_oC16_65_ah_bej-001 |
ICSD | 103927 |
Pearson symbol | oC16 |
Space group number | 65 |
Space group symbol | $Cmmm$ |
AFLOW prototype command |
aflow --proto=A3B5_oC16_65_ah_bej-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{4}, \allowbreak y_{5}$ |
Al$_{3}$Ni$_{5}$, Ga$_{3}$Ni$_{5}$, Mn$_{3}$Pd$_{5}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2a) | Ga I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}$ | (2b) | Pt I |
$\mathbf{B_{3}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}$ | (4e) | Pt II |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{4}b \,\mathbf{\hat{y}}$ | (4e) | Pt II |
$\mathbf{B_{5}}$ | = | $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4h) | Ga II |
$\mathbf{B_{6}}$ | = | $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4h) | Ga II |
$\mathbf{B_{7}}$ | = | $- y_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $b y_{5} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4j) | Pt III |
$\mathbf{B_{8}}$ | = | $y_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- b y_{5} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4j) | Pt III |