Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3BC2_mC24_12_ij_g_hi-001

This structure originally had the label A3BC2_mC24_12_ij_h_gi. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/T76D
or https://aflow.org/p/A3BC2_mC24_12_ij_g_hi-001
or PDF Version

LiOH$\cdot$H$_{2}$O ($B36$) Structure: A3BC2_mC24_12_ij_g_hi-001

Picture of Structure; Click for Big Picture
Prototype H$_{3}$LiO$_{2}$
AFLOW prototype label A3BC2_mC24_12_ij_g_hi-001
Strukturbericht designation $B36$
ICSD 9138
Pearson symbol mC24
Space group number 12
Space group symbol $C2/m$
AFLOW prototype command aflow --proto=A3BC2_mC24_12_ij_g_hi-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak y_{1}, \allowbreak y_{2}, \allowbreak x_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}$

  • The structure given in Strukturbericht (Herrmann, 1943) does not list the hydrogen positions, instead giving positions for Li, OH and H$_{2}$O. (Alcock, 1971) found the hydrogen positions.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \cos{\beta} \,\mathbf{\hat{x}}+c \sin{\beta} \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $- y_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}$ = $b y_{1} \,\mathbf{\hat{y}}$ (4g) Li I
$\mathbf{B_{2}}$ = $y_{1} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}$ = $- b y_{1} \,\mathbf{\hat{y}}$ (4g) Li I
$\mathbf{B_{3}}$ = $- y_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \cos{\beta} \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}+\frac{1}{2}c \sin{\beta} \,\mathbf{\hat{z}}$ (4h) O I
$\mathbf{B_{4}}$ = $y_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \cos{\beta} \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}+\frac{1}{2}c \sin{\beta} \,\mathbf{\hat{z}}$ (4h) O I
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) H I
$\mathbf{B_{6}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- \left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) H I
$\mathbf{B_{7}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) O II
$\mathbf{B_{8}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- \left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) O II
$\mathbf{B_{9}}$ = $\left(x_{5} - y_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5}\right) \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}+c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ (8j) H II
$\mathbf{B_{10}}$ = $- \left(x_{5} + y_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- \left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}- c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ (8j) H II
$\mathbf{B_{11}}$ = $- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5}\right) \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- \left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}- c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ (8j) H II
$\mathbf{B_{12}}$ = $\left(x_{5} + y_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5}\right) \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}+c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ (8j) H II

References

  • N. W. Alcock, Refinement of the crystal structure of lithium hydroxide monohydrate, Acta Crystallogr. Sect. B 27, 1682–1683 (1971), doi:10.1107/S056774087100459X.
  • K. Herrmann, ed., Strukturbericht Band VII 1939 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1943).

Prototype Generator

aflow --proto=A3BC2_mC24_12_ij_g_hi --params=$a,b/a,c/a,\beta,y_{1},y_{2},x_{3},z_{3},x_{4},z_{4},x_{5},y_{5},z_{5}$

Species:

Running:

Output: