Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3BC_oC20_63_ce_c_c-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/2P2W
or https://aflow.org/p/A3BC_oC20_63_ce_c_c-001
or PDF Version

SrPdGa$_{3}$ Structure: A3BC_oC20_63_ce_c_c-001

Picture of Structure; Click for Big Picture
Prototype Ga$_{3}$PdSr
AFLOW prototype label A3BC_oC20_63_ce_c_c-001
ICSD 192026
Pearson symbol oC20
Space group number 63
Space group symbol $Cmcm$
AFLOW prototype command aflow --proto=A3BC_oC20_63_ce_c_c-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak y_{1}, \allowbreak y_{2}, \allowbreak y_{3}, \allowbreak x_{4}$

Other compounds with this structure

CeAgAl$_{3}$,  CePdAl$_{3}$,  CePdGa$_{3}$,  EuPdGa$_{3}$,  LaPdGa$_{3}$,  NdPdGa$_{3}$,  PrPdGa$_{3}$,  SmPdGa$_{3}$,  PbSbO$_{2}$Cl


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $- y_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $b y_{1} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4c) Ga I
$\mathbf{B_{2}}$ = $y_{1} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- b y_{1} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (4c) Ga I
$\mathbf{B_{3}}$ = $- y_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $b y_{2} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4c) Pd I
$\mathbf{B_{4}}$ = $y_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- b y_{2} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (4c) Pd I
$\mathbf{B_{5}}$ = $- y_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $b y_{3} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4c) Sr I
$\mathbf{B_{6}}$ = $y_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- b y_{3} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (4c) Sr I
$\mathbf{B_{7}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}$ = $a x_{4} \,\mathbf{\hat{x}}$ (8e) Ga II
$\mathbf{B_{8}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8e) Ga II
$\mathbf{B_{9}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}$ = $- a x_{4} \,\mathbf{\hat{x}}$ (8e) Ga II
$\mathbf{B_{10}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8e) Ga II

References

  • S. Seidel, R.-D. Hoffmann, and R. Pöttgen, SrPdGa$_{3}$ - An orthorhombic superstructure of the ThCr$_{2}$Si$_{2}$ type, Z. Krystallogr. 229, 421–426 (2014), doi:10.1515/zkri-2014-1742.

Prototype Generator

aflow --proto=A3BC_oC20_63_ce_c_c --params=$a,b/a,c/a,y_{1},y_{2},y_{3},x_{4}$

Species:

Running:

Output: