AFLOW Prototype: A3B_oP16_57_a2d_d-001
This structure originally had the label A3B_oP16_57_a2d_d. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/5B3E
or
https://aflow.org/p/A3B_oP16_57_a2d_d-001
or
PDF Version
Prototype | O$_{3}$W |
AFLOW prototype label | A3B_oP16_57_a2d_d-001 |
Strukturbericht designation | $D0_{10}$ |
ICSD | none |
Pearson symbol | oP16 |
Space group number | 57 |
Space group symbol | $Pbcm$ |
AFLOW prototype command |
aflow --proto=A3B_oP16_57_a2d_d-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak x_{4}, \allowbreak y_{4}$ |
The transition temperatures display large hysteresis effects and universal agreement is not found in the literature.
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (4a) | O I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4a) | O I |
$\mathbf{B_{3}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4a) | O I |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}b \,\mathbf{\hat{y}}$ | (4a) | O I |
$\mathbf{B_{5}}$ | = | $x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $a x_{2} \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (4d) | O II |
$\mathbf{B_{6}}$ | = | $- x_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $- a x_{2} \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (4d) | O II |
$\mathbf{B_{7}}$ | = | $- x_{2} \, \mathbf{a}_{1}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $- a x_{2} \,\mathbf{\hat{x}}+b \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (4d) | O II |
$\mathbf{B_{8}}$ | = | $x_{2} \, \mathbf{a}_{1}- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $a x_{2} \,\mathbf{\hat{x}}- b \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (4d) | O II |
$\mathbf{B_{9}}$ | = | $x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (4d) | O III |
$\mathbf{B_{10}}$ | = | $- x_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (4d) | O III |
$\mathbf{B_{11}}$ | = | $- x_{3} \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}+b \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (4d) | O III |
$\mathbf{B_{12}}$ | = | $x_{3} \, \mathbf{a}_{1}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}- b \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (4d) | O III |
$\mathbf{B_{13}}$ | = | $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (4d) | W I |
$\mathbf{B_{14}}$ | = | $- x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (4d) | W I |
$\mathbf{B_{15}}$ | = | $- x_{4} \, \mathbf{a}_{1}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}+b \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (4d) | W I |
$\mathbf{B_{16}}$ | = | $x_{4} \, \mathbf{a}_{1}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}- b \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (4d) | W I |