Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B_tI32_82_3g_g-001

This structure originally had the label A3B_tI32_82_3g_g. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/WHNY
or https://aflow.org/p/A3B_tI32_82_3g_g-001
or PDF Version

Ni$_{3}$P ($D0_{e}$) Structure: A3B_tI32_82_3g_g-001

Picture of Structure; Click for Big Picture
Prototype Ni$_{3}$P
AFLOW prototype label A3B_tI32_82_3g_g-001
Strukturbericht designation $D0_{3}$
ICSD 626503
Pearson symbol tI32
Space group number 82
Space group symbol $I\overline{4}$
AFLOW prototype command aflow --proto=A3B_tI32_82_3g_g-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak y_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}$

Other compounds with this structure

Cr$_{3}$P,  Fe$_{3}$B,  Fe$_{3}$P,  Mn$_{3}$P,  Mo$_{3}$P,  Ti$_{3}$P,  V$_{3}$P


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\left(y_{1} + z_{1}\right) \, \mathbf{a}_{1}+\left(x_{1} + z_{1}\right) \, \mathbf{a}_{2}+\left(x_{1} + y_{1}\right) \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}+a y_{1} \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (8g) Ni I
$\mathbf{B_{2}}$ = $- \left(y_{1} - z_{1}\right) \, \mathbf{a}_{1}- \left(x_{1} - z_{1}\right) \, \mathbf{a}_{2}- \left(x_{1} + y_{1}\right) \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}- a y_{1} \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (8g) Ni I
$\mathbf{B_{3}}$ = $- \left(x_{1} + z_{1}\right) \, \mathbf{a}_{1}+\left(y_{1} - z_{1}\right) \, \mathbf{a}_{2}- \left(x_{1} - y_{1}\right) \, \mathbf{a}_{3}$ = $a y_{1} \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}- c z_{1} \,\mathbf{\hat{z}}$ (8g) Ni I
$\mathbf{B_{4}}$ = $\left(x_{1} - z_{1}\right) \, \mathbf{a}_{1}- \left(y_{1} + z_{1}\right) \, \mathbf{a}_{2}+\left(x_{1} - y_{1}\right) \, \mathbf{a}_{3}$ = $- a y_{1} \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}- c z_{1} \,\mathbf{\hat{z}}$ (8g) Ni I
$\mathbf{B_{5}}$ = $\left(y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + y_{2}\right) \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (8g) Ni II
$\mathbf{B_{6}}$ = $- \left(y_{2} - z_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - z_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + y_{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (8g) Ni II
$\mathbf{B_{7}}$ = $- \left(x_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(y_{2} - z_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ (8g) Ni II
$\mathbf{B_{8}}$ = $\left(x_{2} - z_{2}\right) \, \mathbf{a}_{1}- \left(y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} - y_{2}\right) \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ (8g) Ni II
$\mathbf{B_{9}}$ = $\left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (8g) Ni III
$\mathbf{B_{10}}$ = $- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (8g) Ni III
$\mathbf{B_{11}}$ = $- \left(x_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (8g) Ni III
$\mathbf{B_{12}}$ = $\left(x_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3}\right) \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (8g) Ni III
$\mathbf{B_{13}}$ = $\left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + y_{4}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (8g) P I
$\mathbf{B_{14}}$ = $- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} - z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (8g) P I
$\mathbf{B_{15}}$ = $- \left(x_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(y_{4} - z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (8g) P I
$\mathbf{B_{16}}$ = $\left(x_{4} - z_{4}\right) \, \mathbf{a}_{1}- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (8g) P I

References


Prototype Generator

aflow --proto=A3B_tI32_82_3g_g --params=$a,c/a,x_{1},y_{1},z_{1},x_{2},y_{2},z_{2},x_{3},y_{3},z_{3},x_{4},y_{4},z_{4}$

Species:

Running:

Output: