Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A4B12C3_oF76_69_2g_cf2gl_ag-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/Y2ES
or https://aflow.org/p/A4B12C3_oF76_69_2g_cf2gl_ag-001
or PDF Version

Orthorhombic Bi$_{4}$Ti$_{3}$O$_{12}$ $m = 3$ Aurivillius Structure: A4B12C3_oF76_69_2g_cf2gl_ag-001

Picture of Structure; Click for Big Picture
Prototype Bi$_{4}$O$_{12}$Ti$_{3}$
AFLOW prototype label A4B12C3_oF76_69_2g_cf2gl_ag-001
ICSD 24735
Pearson symbol oF76
Space group number 69
Space group symbol $Fmmm$
AFLOW prototype command aflow --proto=A4B12C3_oF76_69_2g_cf2gl_ag-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak x_{7}, \allowbreak x_{8}, \allowbreak x_{9}$

  • Aurivillius phases are layered tetragonal materials with composition (Me$'_{2}$O$_{2}$)$^{2+}$(Me$_{m-1}$R$_{m}$O$_{3m+1}$)$^{2-}$ (Me$_{m-1}$Me$'_{2}$R$_{m}$O$_{3(m+1)}$), where Me and Me' are metals and R is a transition metal with a charge of +4 or +5. (Subbaro, 1962)
  • This is the original structural determination by (Aurivillius, 1949). It should not be confused with the obsolete $m=3$ Aurivillius structure in space group $Aea2$ #41.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (4a) Ti I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $\frac{1}{4}b \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8c) O I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8c) O I
$\mathbf{B_{4}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8f) O II
$\mathbf{B_{5}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (8f) O II
$\mathbf{B_{6}}$ = $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}$ (8g) Bi I
$\mathbf{B_{7}}$ = $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}$ (8g) Bi I
$\mathbf{B_{8}}$ = $- x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}$ (8g) Bi II
$\mathbf{B_{9}}$ = $x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}$ (8g) Bi II
$\mathbf{B_{10}}$ = $- x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}$ (8g) O III
$\mathbf{B_{11}}$ = $x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}$ (8g) O III
$\mathbf{B_{12}}$ = $- x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}$ (8g) O IV
$\mathbf{B_{13}}$ = $x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}$ (8g) O IV
$\mathbf{B_{14}}$ = $- x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}$ (8g) Ti II
$\mathbf{B_{15}}$ = $x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- x_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}$ (8g) Ti II
$\mathbf{B_{16}}$ = $- \left(x_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+x_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (16l) O V
$\mathbf{B_{17}}$ = $x_{9} \, \mathbf{a}_{1}- \left(x_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (16l) O V
$\mathbf{B_{18}}$ = $\left(x_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}- x_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (16l) O V
$\mathbf{B_{19}}$ = $- x_{9} \, \mathbf{a}_{1}+\left(x_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (16l) O V

References

  • B. Aurivillius, Mixed bismuth oxides with layer lattices II. Structure of Bi$_{4}$Ti$_{3}$O$_{12}$, Arkiv för Kemi 1, 499–512 (1949).
  • E. C. Subbarao, A family of ferroelectric bismuth compounds, J. Phys.: Conf. Ser. 23, 665–676 (1962), doi:10.1016/0022-3697(62)90526-7.
  • Y.-Y. Guo, A. S. Gibbs, J. M. Perez-Matoc, and P. Lightfoot, Unexpected phase transition sequence in the ferroelectric Bi$_{4}$Ti$_{3}$O$_{12}$, IUCrJ 6, 438–446 (2019), doi:10.1107/S2052252519003804.
  • J. F. Dorrian, R. E. Newnham, D. K. Smith, and M. I. Kay, Crystal Structure of Bi$_{4}$Ti$_{3}$O$_{12}$, Ferroelectrics 3, 17–27 (1972), doi:10.1080/00150197108237680.

Prototype Generator

aflow --proto=A4B12C3_oF76_69_2g_cf2gl_ag --params=$a,b/a,c/a,x_{4},x_{5},x_{6},x_{7},x_{8},x_{9}$

Species:

Running:

Output: