AFLOW Prototype: A4B12C3_oF76_69_2g_cf2gl_ag-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/Y2ES
or
https://aflow.org/p/A4B12C3_oF76_69_2g_cf2gl_ag-001
or
PDF Version
Prototype | Bi$_{4}$O$_{12}$Ti$_{3}$ |
AFLOW prototype label | A4B12C3_oF76_69_2g_cf2gl_ag-001 |
ICSD | 24735 |
Pearson symbol | oF76 |
Space group number | 69 |
Space group symbol | $Fmmm$ |
AFLOW prototype command |
aflow --proto=A4B12C3_oF76_69_2g_cf2gl_ag-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak x_{7}, \allowbreak x_{8}, \allowbreak x_{9}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (4a) | Ti I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}$ | = | $\frac{1}{4}b \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8c) | O I |
$\mathbf{B_{3}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8c) | O I |
$\mathbf{B_{4}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8f) | O II |
$\mathbf{B_{5}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (8f) | O II |
$\mathbf{B_{6}}$ | = | $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}$ | (8g) | Bi I |
$\mathbf{B_{7}}$ | = | $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}$ | (8g) | Bi I |
$\mathbf{B_{8}}$ | = | $- x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}$ | (8g) | Bi II |
$\mathbf{B_{9}}$ | = | $x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}$ | (8g) | Bi II |
$\mathbf{B_{10}}$ | = | $- x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ | = | $a x_{6} \,\mathbf{\hat{x}}$ | (8g) | O III |
$\mathbf{B_{11}}$ | = | $x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ | = | $- a x_{6} \,\mathbf{\hat{x}}$ | (8g) | O III |
$\mathbf{B_{12}}$ | = | $- x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ | = | $a x_{7} \,\mathbf{\hat{x}}$ | (8g) | O IV |
$\mathbf{B_{13}}$ | = | $x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ | = | $- a x_{7} \,\mathbf{\hat{x}}$ | (8g) | O IV |
$\mathbf{B_{14}}$ | = | $- x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ | = | $a x_{8} \,\mathbf{\hat{x}}$ | (8g) | Ti II |
$\mathbf{B_{15}}$ | = | $x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- x_{8} \, \mathbf{a}_{3}$ | = | $- a x_{8} \,\mathbf{\hat{x}}$ | (8g) | Ti II |
$\mathbf{B_{16}}$ | = | $- \left(x_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+x_{9} \, \mathbf{a}_{3}$ | = | $a x_{9} \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (16l) | O V |
$\mathbf{B_{17}}$ | = | $x_{9} \, \mathbf{a}_{1}- \left(x_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (16l) | O V |
$\mathbf{B_{18}}$ | = | $\left(x_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}- x_{9} \, \mathbf{a}_{3}$ | = | $- a x_{9} \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (16l) | O V |
$\mathbf{B_{19}}$ | = | $- x_{9} \, \mathbf{a}_{1}+\left(x_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (16l) | O V |