AFLOW Prototype: A4B3C8_tI30_139_2e_ae_cdg-002
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/W8GW
or
https://aflow.org/p/A4B3C8_tI30_139_2e_ae_cdg-002
or
PDF Version
Prototype | Nd$_{4}$Ni$_{3}$O$_{8}$ |
AFLOW prototype label | A4B3C8_tI30_139_2e_ae_cdg-002 |
ICSD | 173372 |
Pearson symbol | tI30 |
Space group number | 139 |
Space group symbol | $I4/mmm$ |
AFLOW prototype command |
aflow --proto=A4B3C8_tI30_139_2e_ae_cdg-002
--params=$a, \allowbreak c/a, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{6}, \allowbreak z_{7}$ |
La$_{4}$Ni$_{3}$O$_{8}$, Pr$_{4}$Ni$_{3}$O$_{8}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2a) | Ni I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}$ | (4c) | O I |
$\mathbf{B_{3}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}$ | (4c) | O I |
$\mathbf{B_{4}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (4d) | O II |
$\mathbf{B_{5}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (4d) | O II |
$\mathbf{B_{6}}$ | = | $z_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}$ | = | $c z_{4} \,\mathbf{\hat{z}}$ | (4e) | Nd I |
$\mathbf{B_{7}}$ | = | $- z_{4} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}$ | = | $- c z_{4} \,\mathbf{\hat{z}}$ | (4e) | Nd I |
$\mathbf{B_{8}}$ | = | $z_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}$ | = | $c z_{5} \,\mathbf{\hat{z}}$ | (4e) | Nd II |
$\mathbf{B_{9}}$ | = | $- z_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}$ | = | $- c z_{5} \,\mathbf{\hat{z}}$ | (4e) | Nd II |
$\mathbf{B_{10}}$ | = | $z_{6} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}$ | = | $c z_{6} \,\mathbf{\hat{z}}$ | (4e) | Ni II |
$\mathbf{B_{11}}$ | = | $- z_{6} \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}$ | = | $- c z_{6} \,\mathbf{\hat{z}}$ | (4e) | Ni II |
$\mathbf{B_{12}}$ | = | $\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (8g) | O III |
$\mathbf{B_{13}}$ | = | $z_{7} \, \mathbf{a}_{1}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{7} \,\mathbf{\hat{z}}$ | (8g) | O III |
$\mathbf{B_{14}}$ | = | $- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ | (8g) | O III |
$\mathbf{B_{15}}$ | = | $- z_{7} \, \mathbf{a}_{1}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{7} \,\mathbf{\hat{z}}$ | (8g) | O III |