AFLOW Prototype: A4B5_tI18_87_h_ah-001
This structure originally had the label A4B5_tI18_87_h_ah. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/E7DL
or
https://aflow.org/p/A4B5_tI18_87_h_ah-001
or
PDF Version
Prototype | Te$_{4}$Ti$_{5}$ |
AFLOW prototype label | A4B5_tI18_87_h_ah-001 |
ICSD | 15451 |
Pearson symbol | tI18 |
Space group number | 87 |
Space group symbol | $I4/m$ |
AFLOW prototype command |
aflow --proto=A4B5_tI18_87_h_ah-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak x_{3}, \allowbreak y_{3}$ |
Mo$_{5}$As$_{4}$, Nb$_{5}$Sb$_{4}$, Nb$_{5}$Se$_{4}$, Nb$_{5}$Te$_{4}$, Ta$_{5}$Sb$_{4}$, V$_{5}$S$_{4}$, V$_{5}$Se$_{4}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2a) | Ti I |
$\mathbf{B_{2}}$ | = | $y_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\left(x_{2} + y_{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}$ | (8h) | Te I |
$\mathbf{B_{3}}$ | = | $- y_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- \left(x_{2} + y_{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}$ | (8h) | Te I |
$\mathbf{B_{4}}$ | = | $x_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\left(x_{2} - y_{2}\right) \, \mathbf{a}_{3}$ | = | $- a y_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}$ | (8h) | Te I |
$\mathbf{B_{5}}$ | = | $- x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{3}$ | = | $a y_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}$ | (8h) | Te I |
$\mathbf{B_{6}}$ | = | $y_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\left(x_{3} + y_{3}\right) \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}$ | (8h) | Ti II |
$\mathbf{B_{7}}$ | = | $- y_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- \left(x_{3} + y_{3}\right) \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}$ | (8h) | Ti II |
$\mathbf{B_{8}}$ | = | $x_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+\left(x_{3} - y_{3}\right) \, \mathbf{a}_{3}$ | = | $- a y_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}$ | (8h) | Ti II |
$\mathbf{B_{9}}$ | = | $- x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{3}$ | = | $a y_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}$ | (8h) | Ti II |