AFLOW Prototype: A4BC12D2_oC76_63_eg_c_f3gh_g-001
This structure originally had the label A4BC12D2_oC76_63_eg_c_f3gh_g. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/CXFF
or
https://aflow.org/p/A4BC12D2_oC76_63_eg_c_f3gh_g-001
or
PDF Version
Prototype | Al$_{4}$FeO$_{10}$(OH)$_{2}$Si |
AFLOW prototype label | A4BC12D2_oC76_63_eg_c_f3gh_g-001 |
Strukturbericht designation | $S0_{4}$ |
Mineral name | staurolite |
ICSD | 46194 |
Pearson symbol | oC76 |
Space group number | 63 |
Space group symbol | $Cmcm$ |
AFLOW prototype command |
aflow --proto=A4BC12D2_oC76_63_eg_c_f3gh_g-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak y_{1}, \allowbreak x_{2}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $- y_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $b y_{1} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (4c) | Fe I |
$\mathbf{B_{2}}$ | = | $y_{1} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $- b y_{1} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (4c) | Fe I |
$\mathbf{B_{3}}$ | = | $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}$ | = | $a x_{2} \,\mathbf{\hat{x}}$ | (8e) | Al I |
$\mathbf{B_{4}}$ | = | $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{2} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (8e) | Al I |
$\mathbf{B_{5}}$ | = | $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}$ | = | $- a x_{2} \,\mathbf{\hat{x}}$ | (8e) | Al I |
$\mathbf{B_{6}}$ | = | $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{2} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (8e) | Al I |
$\mathbf{B_{7}}$ | = | $- y_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $b y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (8f) | O I |
$\mathbf{B_{8}}$ | = | $y_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- b y_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8f) | O I |
$\mathbf{B_{9}}$ | = | $- y_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $b y_{3} \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8f) | O I |
$\mathbf{B_{10}}$ | = | $y_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $- b y_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ | (8f) | O I |
$\mathbf{B_{11}}$ | = | $\left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + y_{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8g) | Al II |
$\mathbf{B_{12}}$ | = | $- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (8g) | Al II |
$\mathbf{B_{13}}$ | = | $- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8g) | Al II |
$\mathbf{B_{14}}$ | = | $\left(x_{4} + y_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (8g) | Al II |
$\mathbf{B_{15}}$ | = | $\left(x_{5} - y_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8g) | O II |
$\mathbf{B_{16}}$ | = | $- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (8g) | O II |
$\mathbf{B_{17}}$ | = | $- \left(x_{5} + y_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8g) | O II |
$\mathbf{B_{18}}$ | = | $\left(x_{5} + y_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (8g) | O II |
$\mathbf{B_{19}}$ | = | $\left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + y_{6}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $a x_{6} \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8g) | O III |
$\mathbf{B_{20}}$ | = | $- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} + y_{6}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $- a x_{6} \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (8g) | O III |
$\mathbf{B_{21}}$ | = | $- \left(x_{6} + y_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $- a x_{6} \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8g) | O III |
$\mathbf{B_{22}}$ | = | $\left(x_{6} + y_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $a x_{6} \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (8g) | O III |
$\mathbf{B_{23}}$ | = | $\left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + y_{7}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $a x_{7} \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8g) | O IV |
$\mathbf{B_{24}}$ | = | $- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $- a x_{7} \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (8g) | O IV |
$\mathbf{B_{25}}$ | = | $- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $- a x_{7} \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8g) | O IV |
$\mathbf{B_{26}}$ | = | $\left(x_{7} + y_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $a x_{7} \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (8g) | O IV |
$\mathbf{B_{27}}$ | = | $\left(x_{8} - y_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} + y_{8}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $a x_{8} \,\mathbf{\hat{x}}+b y_{8} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8g) | Si I |
$\mathbf{B_{28}}$ | = | $- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} + y_{8}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $- a x_{8} \,\mathbf{\hat{x}}- b y_{8} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (8g) | Si I |
$\mathbf{B_{29}}$ | = | $- \left(x_{8} + y_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $- a x_{8} \,\mathbf{\hat{x}}+b y_{8} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8g) | Si I |
$\mathbf{B_{30}}$ | = | $\left(x_{8} + y_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} - y_{8}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $a x_{8} \,\mathbf{\hat{x}}- b y_{8} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (8g) | Si I |
$\mathbf{B_{31}}$ | = | $\left(x_{9} - y_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} + y_{9}\right) \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ | = | $a x_{9} \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ | (16h) | O V |
$\mathbf{B_{32}}$ | = | $- \left(x_{9} - y_{9}\right) \, \mathbf{a}_{1}- \left(x_{9} + y_{9}\right) \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{9} \,\mathbf{\hat{x}}- b y_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (16h) | O V |
$\mathbf{B_{33}}$ | = | $- \left(x_{9} + y_{9}\right) \, \mathbf{a}_{1}- \left(x_{9} - y_{9}\right) \, \mathbf{a}_{2}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{9} \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}- c \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (16h) | O V |
$\mathbf{B_{34}}$ | = | $\left(x_{9} + y_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} - y_{9}\right) \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ | = | $a x_{9} \,\mathbf{\hat{x}}- b y_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ | (16h) | O V |
$\mathbf{B_{35}}$ | = | $- \left(x_{9} - y_{9}\right) \, \mathbf{a}_{1}- \left(x_{9} + y_{9}\right) \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ | = | $- a x_{9} \,\mathbf{\hat{x}}- b y_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ | (16h) | O V |
$\mathbf{B_{36}}$ | = | $\left(x_{9} - y_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} + y_{9}\right) \, \mathbf{a}_{2}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{9} \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}- c \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (16h) | O V |
$\mathbf{B_{37}}$ | = | $\left(x_{9} + y_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} - y_{9}\right) \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{9} \,\mathbf{\hat{x}}- b y_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (16h) | O V |
$\mathbf{B_{38}}$ | = | $- \left(x_{9} + y_{9}\right) \, \mathbf{a}_{1}- \left(x_{9} - y_{9}\right) \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ | = | $- a x_{9} \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ | (16h) | O V |