Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A4BC_cF96_216_efg_e_e-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/39CF
or https://aflow.org/p/A4BC_cF96_216_efg_e_e-001
or PDF Version

Gd$_{4}$RhIn Structure: A4BC_cF96_216_efg_e_e-001

Picture of Structure; Click for Big Picture
Prototype Gd$_{4}$InRh
AFLOW prototype label A4BC_cF96_216_efg_e_e-001
ICSD 417515
Pearson symbol cF96
Space group number 216
Space group symbol $F\overline{4}3m$
AFLOW prototype command aflow --proto=A4BC_cF96_216_efg_e_e-001
--params=$a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}$

Other compounds with this structure

Ca$_{4}$AgMg,  Ca$_{4}$AuMg,  Ca$_{4}$PdMg,  Ce$_{4}$RuMg,  Dy$_{4}$CoCd,  Dy$_{4}$CoMg,  Dy$_{4}$PdAl,  Dy$_{4}$PdMg,  Dy$_{4}$PtAl,  Dy$_{4}$PtMg,  Dy$_{4}$RhCd,  Dy$_{4}$RhIn,  Er$_{4}$CoMg,  Er$_{4}$PdAl,  Er$_{4}$PdMg,  Er$_{4}$PtAl,  Er$_{4}$PtMg,  Er$_{4}$RhAl,  Er$_{4}$RhIn,  Eu$_{4}$AuMg,  Eu$_{4}$PdMg,  Eu$_{4}$PtMg,  Gd$_{4}$CoMg,  Gd$_{4}$PdAl,  Gd$_{4}$PtAl,  Gd$_{4}$RhAl,  Gd$_{4}$RhIn,  Ho$_{4}$CoCd,  Ho$_{4}$CoMg,  Ho$_{4}$PdAl,  Ho$_{4}$PdMg,  Ho$_{4}$PtAl,  Ho$_{4}$PtMg,  Ho$_{4}$RhAl,  Ho$_{4}$RhCd,  Ho$_{4}$RhIn,  La$_{4}$CoMg,  Lu$_{4}$PdAl,  Lu$_{4}$PdMg,  Lu$_{4}$PtAl,  Lu$_{4}$PtMg,  Lu$_{4}$RhIn,  Nd$_{4}$CdIr,  Nd$_{4}$CoMg,  Pr$_{4}$CoMg,  Sm$_{4}$CoMg,  Sm$_{4}$PdAl,  Sm$_{4}$PdMg,  Sm$_{4}$PtAl,  Tb$_{4}$CoCd,  Tb$_{4}$CoMg,  Tb$_{4}$PdAl,  Tb$_{4}$PtAl,  Tb$_{4}$PtMg,  Tb$_{4}$RhAl,  Tb$_{4}$RhCd,  Tb$_{4}$RhIn,  Tm$_{4}$CoMg,  Tm$_{4}$PdAl,  Tm$_{4}$PdMg,  Tm$_{4}$PtAl,  Tm$_{4}$PtMg,  Tm$_{4}$RhIn,  Y$_{4}$CoMg,  Y$_{4}$PdAl,  Y$_{4}$PtAl,  Yb$_{4}$AgMg,  Yb$_{4}$AuMg,  Yb$_{4}$PdMg,  Yb$_{4}$PtMg


  • The ICSD gives Dy$_{4}$CoCd as the prototype for this structure, but even (Doǧan, 2007), which defines that structure, designates Gd$_{4}$RhIn as the prototype, so we use that compound.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}+a x_{1} \,\mathbf{\hat{z}}$ (16e) Gd I
$\mathbf{B_{2}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}- 3 x_{1} \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}+a x_{1} \,\mathbf{\hat{z}}$ (16e) Gd I
$\mathbf{B_{3}}$ = $x_{1} \, \mathbf{a}_{1}- 3 x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}- a x_{1} \,\mathbf{\hat{z}}$ (16e) Gd I
$\mathbf{B_{4}}$ = $- 3 x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}- a x_{1} \,\mathbf{\hat{z}}$ (16e) Gd I
$\mathbf{B_{5}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (16e) In I
$\mathbf{B_{6}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}- 3 x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (16e) In I
$\mathbf{B_{7}}$ = $x_{2} \, \mathbf{a}_{1}- 3 x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (16e) In I
$\mathbf{B_{8}}$ = $- 3 x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (16e) In I
$\mathbf{B_{9}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (16e) Rh I
$\mathbf{B_{10}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- 3 x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (16e) Rh I
$\mathbf{B_{11}}$ = $x_{3} \, \mathbf{a}_{1}- 3 x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (16e) Rh I
$\mathbf{B_{12}}$ = $- 3 x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (16e) Rh I
$\mathbf{B_{13}}$ = $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}$ (24f) Gd II
$\mathbf{B_{14}}$ = $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}$ (24f) Gd II
$\mathbf{B_{15}}$ = $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{y}}$ (24f) Gd II
$\mathbf{B_{16}}$ = $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{y}}$ (24f) Gd II
$\mathbf{B_{17}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{z}}$ (24f) Gd II
$\mathbf{B_{18}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{z}}$ (24f) Gd II
$\mathbf{B_{19}}$ = $- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Gd III
$\mathbf{B_{20}}$ = $x_{5} \, \mathbf{a}_{1}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Gd III
$\mathbf{B_{21}}$ = $x_{5} \, \mathbf{a}_{1}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Gd III
$\mathbf{B_{22}}$ = $- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Gd III
$\mathbf{B_{23}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (24g) Gd III
$\mathbf{B_{24}}$ = $- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24g) Gd III

References

  • R. Zaremba, U. C. Rodewald, R.-D. Hoffmann, and R. Pöttgen, The Rare Earth Metal-Rich Indides RE$_{4}$RhIn (RE = Gd–Tm, Lu), Monatsh. Chem. 138, 523–528 (2007), doi:10.1007/s00706-007-0663-9.
  • A. Doǧan, S. Rayaprol, and R. Pöttgen, Structure and magnetic properties of RE$_{4}$CoCd and RE$_{4}$RhCd (RE = Tb, Dy, Ho), J. Phys.: Condens. Matter 19, 076213 (2007), doi:10.1088/0953-8984/19/7/076213.

Prototype Generator

aflow --proto=A4BC_cF96_216_efg_e_e --params=$a,x_{1},x_{2},x_{3},x_{4},x_{5}$

Species:

Running:

Output: