AFLOW Prototype: A4B_oI20_74_aeh_e-001
This structure originally had the label A4B_oI20_74_beh_e. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
Links to this page
https://aflow.org/p/FNF2
or
https://aflow.org/p/A4B_oI20_74_aeh_e-001
or
PDF Version
Prototype | Al$_{4}$U |
AFLOW prototype label | A4B_oI20_74_aeh_e-001 |
Strukturbericht designation | $D1_{b}$ |
ICSD | 240127 |
Pearson symbol | oI20 |
Space group number | 74 |
Space group symbol | $Imma$ |
AFLOW prototype command |
aflow --proto=A4B_oI20_74_aeh_e-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak y_{4}, \allowbreak z_{4}$ |
Al$_{4}$Gd, Al$_{4}$Np, Al$_{4}$Pu, Ga$_{4}$Pu
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (4a) | Al I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}b \,\mathbf{\hat{y}}$ | (4a) | Al I |
$\mathbf{B_{3}}$ | = | $\left(z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ | (4e) | Al II |
$\mathbf{B_{4}}$ | = | $- \left(z_{2} - \frac{3}{4}\right) \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ | (4e) | Al II |
$\mathbf{B_{5}}$ | = | $\left(z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (4e) | U I |
$\mathbf{B_{6}}$ | = | $- \left(z_{3} - \frac{3}{4}\right) \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ | (4e) | U I |
$\mathbf{B_{7}}$ | = | $\left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ | = | $b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (8h) | Al III |
$\mathbf{B_{8}}$ | = | $\left(- y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- b \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (8h) | Al III |
$\mathbf{B_{9}}$ | = | $\left(y_{4} - z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $b \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (8h) | Al III |
$\mathbf{B_{10}}$ | = | $- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ | = | $- b y_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (8h) | Al III |