Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A5B2C8D2_mP68_4_10a_4a_16a_4a-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/MD4G
or https://aflow.org/p/A5B2C8D2_mP68_4_10a_4a_16a_4a-001
or PDF Version

Monoclinic KH$_{2}$PO$_{4}$ Structure: A5B2C8D2_mP68_4_10a_4a_16a_4a-001

Picture of Structure; Click for Big Picture
Prototype H$_{5}$K$_{2}$O$_{8}$P$_{2}$
AFLOW prototype label A5B2C8D2_mP68_4_10a_4a_16a_4a-001
ICSD 155806
Pearson symbol mP68
Space group number 4
Space group symbol $P2_1$
AFLOW prototype command aflow --proto=A5B2C8D2_mP68_4_10a_4a_16a_4a-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak x_{1}, \allowbreak y_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}, \allowbreak x_{12}, \allowbreak y_{12}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak y_{13}, \allowbreak z_{13}, \allowbreak x_{14}, \allowbreak y_{14}, \allowbreak z_{14}, \allowbreak x_{15}, \allowbreak y_{15}, \allowbreak z_{15}, \allowbreak x_{16}, \allowbreak y_{16}, \allowbreak z_{16}, \allowbreak x_{17}, \allowbreak y_{17}, \allowbreak z_{17}, \allowbreak x_{18}, \allowbreak y_{18}, \allowbreak z_{18}, \allowbreak x_{19}, \allowbreak y_{19}, \allowbreak z_{19}, \allowbreak x_{20}, \allowbreak y_{20}, \allowbreak z_{20}, \allowbreak x_{21}, \allowbreak y_{21}, \allowbreak z_{21}, \allowbreak x_{22}, \allowbreak y_{22}, \allowbreak z_{22}, \allowbreak x_{23}, \allowbreak y_{23}, \allowbreak z_{23}, \allowbreak x_{24}, \allowbreak y_{24}, \allowbreak z_{24}, \allowbreak x_{25}, \allowbreak y_{25}, \allowbreak z_{25}, \allowbreak x_{26}, \allowbreak y_{26}, \allowbreak z_{26}, \allowbreak x_{27}, \allowbreak y_{27}, \allowbreak z_{27}, \allowbreak x_{28}, \allowbreak y_{28}, \allowbreak z_{28}, \allowbreak x_{29}, \allowbreak y_{29}, \allowbreak z_{29}, \allowbreak x_{30}, \allowbreak y_{30}, \allowbreak z_{30}, \allowbreak x_{31}, \allowbreak y_{31}, \allowbreak z_{31}, \allowbreak x_{32}, \allowbreak y_{32}, \allowbreak z_{32}, \allowbreak x_{33}, \allowbreak y_{33}, \allowbreak z_{33}, \allowbreak x_{34}, \allowbreak y_{34}, \allowbreak z_{34}$

  • This structure was grown from slow evaporation from an aqueous solution of KH$_{2}$PO$_{4}$ and K$_{4}$P$_{2}$O$_{7}$ at room temperature, and is metastable. The ground state of KH$_{2}$PO$_{4}$ is the ferroelectric mineral archerite, stable below 121K, and above that temperature the stable phase is the paraelectric $H2_{2}$ structure.
  • Although (Fukami, 2006) give the chemical formula for this structure as KH$_{2}$PO$_{4}$, they list 10 hydrogen Wyckoff positions, making the actual formula K$_{2}$H$_{5}$P$_{2}$O$_{8}$. These hydrogens form O-H-O bonds between the oxygen atoms on neighboring PO$_{4}$ tetrahedra, but are not centered between the oxygens.
  • Space group $P2_{1}$ #4 does not specify an origin for the $y$-axis. Here we set it by taking $y_{11} = 0$ for the K-I Wyckoff position.
  • The ICSD entry claims to be from (Fukami, 2006), but it only includes the first five oxygen sites from Table II of that paper, with no information about the hydrogen atoms.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \cos{\beta} \,\mathbf{\hat{x}}+c \sin{\beta} \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $\left(a x_{1} + c z_{1} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{1} \,\mathbf{\hat{y}}+c z_{1} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) H I
$\mathbf{B_{2}}$ = $- x_{1} \, \mathbf{a}_{1}+\left(y_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}$ = $- \left(a x_{1} + c z_{1} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{1} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{1} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) H I
$\mathbf{B_{3}}$ = $x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}+c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) H II
$\mathbf{B_{4}}$ = $- x_{2} \, \mathbf{a}_{1}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $- \left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) H II
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) H III
$\mathbf{B_{6}}$ = $- x_{3} \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- \left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) H III
$\mathbf{B_{7}}$ = $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) H IV
$\mathbf{B_{8}}$ = $- x_{4} \, \mathbf{a}_{1}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- \left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) H IV
$\mathbf{B_{9}}$ = $x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}+c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) H V
$\mathbf{B_{10}}$ = $- x_{5} \, \mathbf{a}_{1}+\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- \left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) H V
$\mathbf{B_{11}}$ = $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}+c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) H VI
$\mathbf{B_{12}}$ = $- x_{6} \, \mathbf{a}_{1}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- \left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) H VI
$\mathbf{B_{13}}$ = $x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}+c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) H VII
$\mathbf{B_{14}}$ = $- x_{7} \, \mathbf{a}_{1}+\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- \left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) H VII
$\mathbf{B_{15}}$ = $x_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $\left(a x_{8} + c z_{8} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{8} \,\mathbf{\hat{y}}+c z_{8} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) H VIII
$\mathbf{B_{16}}$ = $- x_{8} \, \mathbf{a}_{1}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $- \left(a x_{8} + c z_{8} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{8} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) H VIII
$\mathbf{B_{17}}$ = $x_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $\left(a x_{9} + c z_{9} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}+c z_{9} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) H IX
$\mathbf{B_{18}}$ = $- x_{9} \, \mathbf{a}_{1}+\left(y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $- \left(a x_{9} + c z_{9} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{9} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) H IX
$\mathbf{B_{19}}$ = $x_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $\left(a x_{10} + c z_{10} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}+c z_{10} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) H X
$\mathbf{B_{20}}$ = $- x_{10} \, \mathbf{a}_{1}+\left(y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $- \left(a x_{10} + c z_{10} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{10} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{10} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) H X
$\mathbf{B_{21}}$ = $x_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $\left(a x_{11} + c z_{11} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{11} \,\mathbf{\hat{y}}+c z_{11} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) K I
$\mathbf{B_{22}}$ = $- x_{11} \, \mathbf{a}_{1}+\left(y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $- \left(a x_{11} + c z_{11} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{11} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) K I
$\mathbf{B_{23}}$ = $x_{12} \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $\left(a x_{12} + c z_{12} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{12} \,\mathbf{\hat{y}}+c z_{12} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) K II
$\mathbf{B_{24}}$ = $- x_{12} \, \mathbf{a}_{1}+\left(y_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ = $- \left(a x_{12} + c z_{12} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{12} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{12} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) K II
$\mathbf{B_{25}}$ = $x_{13} \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $\left(a x_{13} + c z_{13} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{13} \,\mathbf{\hat{y}}+c z_{13} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) K III
$\mathbf{B_{26}}$ = $- x_{13} \, \mathbf{a}_{1}+\left(y_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ = $- \left(a x_{13} + c z_{13} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{13} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{13} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) K III
$\mathbf{B_{27}}$ = $x_{14} \, \mathbf{a}_{1}+y_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $\left(a x_{14} + c z_{14} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{14} \,\mathbf{\hat{y}}+c z_{14} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) K IV
$\mathbf{B_{28}}$ = $- x_{14} \, \mathbf{a}_{1}+\left(y_{14} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{14} \, \mathbf{a}_{3}$ = $- \left(a x_{14} + c z_{14} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{14} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{14} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) K IV
$\mathbf{B_{29}}$ = $x_{15} \, \mathbf{a}_{1}+y_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $\left(a x_{15} + c z_{15} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{15} \,\mathbf{\hat{y}}+c z_{15} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O I
$\mathbf{B_{30}}$ = $- x_{15} \, \mathbf{a}_{1}+\left(y_{15} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{15} \, \mathbf{a}_{3}$ = $- \left(a x_{15} + c z_{15} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{15} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{15} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O I
$\mathbf{B_{31}}$ = $x_{16} \, \mathbf{a}_{1}+y_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $\left(a x_{16} + c z_{16} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{16} \,\mathbf{\hat{y}}+c z_{16} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O II
$\mathbf{B_{32}}$ = $- x_{16} \, \mathbf{a}_{1}+\left(y_{16} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{16} \, \mathbf{a}_{3}$ = $- \left(a x_{16} + c z_{16} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{16} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{16} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O II
$\mathbf{B_{33}}$ = $x_{17} \, \mathbf{a}_{1}+y_{17} \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $\left(a x_{17} + c z_{17} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{17} \,\mathbf{\hat{y}}+c z_{17} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O III
$\mathbf{B_{34}}$ = $- x_{17} \, \mathbf{a}_{1}+\left(y_{17} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{17} \, \mathbf{a}_{3}$ = $- \left(a x_{17} + c z_{17} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{17} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{17} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O III
$\mathbf{B_{35}}$ = $x_{18} \, \mathbf{a}_{1}+y_{18} \, \mathbf{a}_{2}+z_{18} \, \mathbf{a}_{3}$ = $\left(a x_{18} + c z_{18} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{18} \,\mathbf{\hat{y}}+c z_{18} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O IV
$\mathbf{B_{36}}$ = $- x_{18} \, \mathbf{a}_{1}+\left(y_{18} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{18} \, \mathbf{a}_{3}$ = $- \left(a x_{18} + c z_{18} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{18} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{18} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O IV
$\mathbf{B_{37}}$ = $x_{19} \, \mathbf{a}_{1}+y_{19} \, \mathbf{a}_{2}+z_{19} \, \mathbf{a}_{3}$ = $\left(a x_{19} + c z_{19} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{19} \,\mathbf{\hat{y}}+c z_{19} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O V
$\mathbf{B_{38}}$ = $- x_{19} \, \mathbf{a}_{1}+\left(y_{19} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{19} \, \mathbf{a}_{3}$ = $- \left(a x_{19} + c z_{19} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{19} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{19} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O V
$\mathbf{B_{39}}$ = $x_{20} \, \mathbf{a}_{1}+y_{20} \, \mathbf{a}_{2}+z_{20} \, \mathbf{a}_{3}$ = $\left(a x_{20} + c z_{20} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{20} \,\mathbf{\hat{y}}+c z_{20} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O VI
$\mathbf{B_{40}}$ = $- x_{20} \, \mathbf{a}_{1}+\left(y_{20} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{20} \, \mathbf{a}_{3}$ = $- \left(a x_{20} + c z_{20} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{20} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{20} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O VI
$\mathbf{B_{41}}$ = $x_{21} \, \mathbf{a}_{1}+y_{21} \, \mathbf{a}_{2}+z_{21} \, \mathbf{a}_{3}$ = $\left(a x_{21} + c z_{21} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{21} \,\mathbf{\hat{y}}+c z_{21} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O VII
$\mathbf{B_{42}}$ = $- x_{21} \, \mathbf{a}_{1}+\left(y_{21} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{21} \, \mathbf{a}_{3}$ = $- \left(a x_{21} + c z_{21} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{21} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{21} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O VII
$\mathbf{B_{43}}$ = $x_{22} \, \mathbf{a}_{1}+y_{22} \, \mathbf{a}_{2}+z_{22} \, \mathbf{a}_{3}$ = $\left(a x_{22} + c z_{22} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{22} \,\mathbf{\hat{y}}+c z_{22} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O VIII
$\mathbf{B_{44}}$ = $- x_{22} \, \mathbf{a}_{1}+\left(y_{22} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{22} \, \mathbf{a}_{3}$ = $- \left(a x_{22} + c z_{22} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{22} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{22} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O VIII
$\mathbf{B_{45}}$ = $x_{23} \, \mathbf{a}_{1}+y_{23} \, \mathbf{a}_{2}+z_{23} \, \mathbf{a}_{3}$ = $\left(a x_{23} + c z_{23} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{23} \,\mathbf{\hat{y}}+c z_{23} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O IX
$\mathbf{B_{46}}$ = $- x_{23} \, \mathbf{a}_{1}+\left(y_{23} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{23} \, \mathbf{a}_{3}$ = $- \left(a x_{23} + c z_{23} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{23} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{23} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O IX
$\mathbf{B_{47}}$ = $x_{24} \, \mathbf{a}_{1}+y_{24} \, \mathbf{a}_{2}+z_{24} \, \mathbf{a}_{3}$ = $\left(a x_{24} + c z_{24} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{24} \,\mathbf{\hat{y}}+c z_{24} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O X
$\mathbf{B_{48}}$ = $- x_{24} \, \mathbf{a}_{1}+\left(y_{24} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{24} \, \mathbf{a}_{3}$ = $- \left(a x_{24} + c z_{24} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{24} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{24} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O X
$\mathbf{B_{49}}$ = $x_{25} \, \mathbf{a}_{1}+y_{25} \, \mathbf{a}_{2}+z_{25} \, \mathbf{a}_{3}$ = $\left(a x_{25} + c z_{25} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{25} \,\mathbf{\hat{y}}+c z_{25} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XI
$\mathbf{B_{50}}$ = $- x_{25} \, \mathbf{a}_{1}+\left(y_{25} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{25} \, \mathbf{a}_{3}$ = $- \left(a x_{25} + c z_{25} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{25} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{25} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XI
$\mathbf{B_{51}}$ = $x_{26} \, \mathbf{a}_{1}+y_{26} \, \mathbf{a}_{2}+z_{26} \, \mathbf{a}_{3}$ = $\left(a x_{26} + c z_{26} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{26} \,\mathbf{\hat{y}}+c z_{26} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XII
$\mathbf{B_{52}}$ = $- x_{26} \, \mathbf{a}_{1}+\left(y_{26} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{26} \, \mathbf{a}_{3}$ = $- \left(a x_{26} + c z_{26} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{26} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{26} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XII
$\mathbf{B_{53}}$ = $x_{27} \, \mathbf{a}_{1}+y_{27} \, \mathbf{a}_{2}+z_{27} \, \mathbf{a}_{3}$ = $\left(a x_{27} + c z_{27} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{27} \,\mathbf{\hat{y}}+c z_{27} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XIII
$\mathbf{B_{54}}$ = $- x_{27} \, \mathbf{a}_{1}+\left(y_{27} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{27} \, \mathbf{a}_{3}$ = $- \left(a x_{27} + c z_{27} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{27} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{27} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XIII
$\mathbf{B_{55}}$ = $x_{28} \, \mathbf{a}_{1}+y_{28} \, \mathbf{a}_{2}+z_{28} \, \mathbf{a}_{3}$ = $\left(a x_{28} + c z_{28} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{28} \,\mathbf{\hat{y}}+c z_{28} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XIV
$\mathbf{B_{56}}$ = $- x_{28} \, \mathbf{a}_{1}+\left(y_{28} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{28} \, \mathbf{a}_{3}$ = $- \left(a x_{28} + c z_{28} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{28} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{28} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XIV
$\mathbf{B_{57}}$ = $x_{29} \, \mathbf{a}_{1}+y_{29} \, \mathbf{a}_{2}+z_{29} \, \mathbf{a}_{3}$ = $\left(a x_{29} + c z_{29} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{29} \,\mathbf{\hat{y}}+c z_{29} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XV
$\mathbf{B_{58}}$ = $- x_{29} \, \mathbf{a}_{1}+\left(y_{29} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{29} \, \mathbf{a}_{3}$ = $- \left(a x_{29} + c z_{29} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{29} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{29} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XV
$\mathbf{B_{59}}$ = $x_{30} \, \mathbf{a}_{1}+y_{30} \, \mathbf{a}_{2}+z_{30} \, \mathbf{a}_{3}$ = $\left(a x_{30} + c z_{30} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{30} \,\mathbf{\hat{y}}+c z_{30} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XVI
$\mathbf{B_{60}}$ = $- x_{30} \, \mathbf{a}_{1}+\left(y_{30} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{30} \, \mathbf{a}_{3}$ = $- \left(a x_{30} + c z_{30} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{30} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{30} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XVI
$\mathbf{B_{61}}$ = $x_{31} \, \mathbf{a}_{1}+y_{31} \, \mathbf{a}_{2}+z_{31} \, \mathbf{a}_{3}$ = $\left(a x_{31} + c z_{31} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{31} \,\mathbf{\hat{y}}+c z_{31} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) P I
$\mathbf{B_{62}}$ = $- x_{31} \, \mathbf{a}_{1}+\left(y_{31} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{31} \, \mathbf{a}_{3}$ = $- \left(a x_{31} + c z_{31} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{31} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{31} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) P I
$\mathbf{B_{63}}$ = $x_{32} \, \mathbf{a}_{1}+y_{32} \, \mathbf{a}_{2}+z_{32} \, \mathbf{a}_{3}$ = $\left(a x_{32} + c z_{32} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{32} \,\mathbf{\hat{y}}+c z_{32} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) P II
$\mathbf{B_{64}}$ = $- x_{32} \, \mathbf{a}_{1}+\left(y_{32} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{32} \, \mathbf{a}_{3}$ = $- \left(a x_{32} + c z_{32} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{32} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{32} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) P II
$\mathbf{B_{65}}$ = $x_{33} \, \mathbf{a}_{1}+y_{33} \, \mathbf{a}_{2}+z_{33} \, \mathbf{a}_{3}$ = $\left(a x_{33} + c z_{33} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{33} \,\mathbf{\hat{y}}+c z_{33} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) P III
$\mathbf{B_{66}}$ = $- x_{33} \, \mathbf{a}_{1}+\left(y_{33} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{33} \, \mathbf{a}_{3}$ = $- \left(a x_{33} + c z_{33} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{33} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{33} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) P III
$\mathbf{B_{67}}$ = $x_{34} \, \mathbf{a}_{1}+y_{34} \, \mathbf{a}_{2}+z_{34} \, \mathbf{a}_{3}$ = $\left(a x_{34} + c z_{34} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{34} \,\mathbf{\hat{y}}+c z_{34} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) P IV
$\mathbf{B_{68}}$ = $- x_{34} \, \mathbf{a}_{1}+\left(y_{34} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{34} \, \mathbf{a}_{3}$ = $- \left(a x_{34} + c z_{34} \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{34} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{34} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) P IV

References

  • T. Fukami and R.-H. Chen, Crystal Structure and Transitions for Monoclinic KH$_{2}$PO$_{4}$ Crystal, J. Phys. Soc. Jpn. 75, 074602 (2006), doi:10.1143/JPSJ.75.074602.

Prototype Generator

aflow --proto=A5B2C8D2_mP68_4_10a_4a_16a_4a --params=$a,b/a,c/a,\beta,x_{1},y_{1},z_{1},x_{2},y_{2},z_{2},x_{3},y_{3},z_{3},x_{4},y_{4},z_{4},x_{5},y_{5},z_{5},x_{6},y_{6},z_{6},x_{7},y_{7},z_{7},x_{8},y_{8},z_{8},x_{9},y_{9},z_{9},x_{10},y_{10},z_{10},x_{11},y_{11},z_{11},x_{12},y_{12},z_{12},x_{13},y_{13},z_{13},x_{14},y_{14},z_{14},x_{15},y_{15},z_{15},x_{16},y_{16},z_{16},x_{17},y_{17},z_{17},x_{18},y_{18},z_{18},x_{19},y_{19},z_{19},x_{20},y_{20},z_{20},x_{21},y_{21},z_{21},x_{22},y_{22},z_{22},x_{23},y_{23},z_{23},x_{24},y_{24},z_{24},x_{25},y_{25},z_{25},x_{26},y_{26},z_{26},x_{27},y_{27},z_{27},x_{28},y_{28},z_{28},x_{29},y_{29},z_{29},x_{30},y_{30},z_{30},x_{31},y_{31},z_{31},x_{32},y_{32},z_{32},x_{33},y_{33},z_{33},x_{34},y_{34},z_{34}$

Species:

Running:

Output: