Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A5B2_mC14_12_a2i_i-001

This structure originally had the label A5B2_mC14_12_a2i_i. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/9H7D
or https://aflow.org/p/A5B2_mC14_12_a2i_i-001
or PDF Version

Au$_{5}$Mn$_{2}$ Structure: A5B2_mC14_12_a2i_i-001

Picture of Structure; Click for Big Picture
Prototype Au$_{5}$Mn$_{2}$
AFLOW prototype label A5B2_mC14_12_a2i_i-001
ICSD 144447
Pearson symbol mC14
Space group number 12
Space group symbol $C2/m$
AFLOW prototype command aflow --proto=A5B2_mC14_12_a2i_i-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak x_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak z_{4}$

  • As noted by (Pearson, 1972), this structure is very nearly cubic close-packed. As such, it is frequently used for cluster expansion models.
  • (Humble, 1964) puts this structure in space group $Cc$ #5, but the coordinates given are consistent with space group $C2/m$ #12.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \cos{\beta} \,\mathbf{\hat{x}}+c \sin{\beta} \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Au I
$\mathbf{B_{2}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Au II
$\mathbf{B_{3}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $- \left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Au II
$\mathbf{B_{4}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Au III
$\mathbf{B_{5}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- \left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Au III
$\mathbf{B_{6}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Mn I
$\mathbf{B_{7}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- \left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) Mn I

References

  • S. G. Humble, Establishment of an ordered phase of composition Au$_{5}$Mn$_{2}$ in the gold-manganese system, Acta Cryst. 17, 1485–1486 (1964), doi:10.1107/S0365110X64003723.
  • W. B. Pearson, The Crystal Chemistry and Physics of Metals and Alloys (Wiley Interscience, New York, London, Sydney, Tornoto, 1972).

Found in

  • G. van Tendeloo, R. Wolf, and S. Amelinckx, The Microstructure of the Alloy Au$_{5}$Mn$_{2}$: A Domain Structure with 84 Variants, Phys. Stat. Solidi A 40, 531–550 (1977), doi:10.1002/pssa.2210400220.
  • W. B. Pearson, The Crystal Chemistry and Physics of Metals and Alloys (Wiley Interscience, New York, London, Sydney, Tornoto, 1972).

Prototype Generator

aflow --proto=A5B2_mC14_12_a2i_i --params=$a,b/a,c/a,\beta,x_{2},z_{2},x_{3},z_{3},x_{4},z_{4}$

Species:

Running:

Output: