Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A5B2_oP14_59_a2e_e-001

This structure originally had the label A5B2_oP14_59_a2f_f. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/KZMB
or https://aflow.org/p/A5B2_oP14_59_a2e_e-001
or PDF Version

Shcherbinaite (V$_{2}$O$_{5}$) Structure (Revised): A5B2_oP14_59_a2e_e-001

Picture of Structure; Click for Big Picture
Prototype O$_{5}$V$_{2}$
AFLOW prototype label A5B2_oP14_59_a2e_e-001
Mineral name shcherbinaite
ICSD 60767
Pearson symbol oP14
Space group number 59
Space group symbol $Pmmn$
AFLOW prototype command aflow --proto=A5B2_oP14_59_a2e_e-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak y_{4}, \allowbreak z_{4}$

  • An earlier version of this structure found by (Ketelaar, 1936) was given the $D8_{7}$ Strukturbericht designation in (Gottfried, 1938). It was later realized that this structure had a rather unexpected arrangement of vanadium atoms, and the structure was revised by (Enjalbert, 1986) and others.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (2a) O I
$\mathbf{B_{2}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{1} \,\mathbf{\hat{z}}$ (2a) O I
$\mathbf{B_{3}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (4e) O II
$\mathbf{B_{4}}$ = $\frac{1}{4} \, \mathbf{a}_{1}- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- b \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (4e) O II
$\mathbf{B_{5}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+b \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ (4e) O II
$\mathbf{B_{6}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ (4e) O II
$\mathbf{B_{7}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (4e) O III
$\mathbf{B_{8}}$ = $\frac{1}{4} \, \mathbf{a}_{1}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- b \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (4e) O III
$\mathbf{B_{9}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+b \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (4e) O III
$\mathbf{B_{10}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (4e) O III
$\mathbf{B_{11}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (4e) V I
$\mathbf{B_{12}}$ = $\frac{1}{4} \, \mathbf{a}_{1}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- b \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (4e) V I
$\mathbf{B_{13}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+b \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (4e) V I
$\mathbf{B_{14}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (4e) V I

References

  • R. Enjalbert and J. Galy, A Refinement of the Structure of V$_{2}$O$_{5}$, Acta Crystallogr. Sect. C 42, 1467–1469 (1986), doi:10.1107/S0108270186091825.
  • J. A. A. Ketelaar, Crystal Structure and Shape of Colloidal Particles of Vanadium Pentoxide, Nature 137, 316 (1936), doi:10.1038/137316a0.
  • C. Gottfried, ed., Strukturbericht Band IV 1936 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1938).

Prototype Generator

aflow --proto=A5B2_oP14_59_a2e_e --params=$a,b/a,c/a,z_{1},y_{2},z_{2},y_{3},z_{3},y_{4},z_{4}$

Species:

Running:

Output: