Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A5B3C_hP18_186_2a3b_2ab_b-001

This structure originally had the label A5B3C_hP18_186_2a3b_2ab_b. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/KHLK
or https://aflow.org/p/A5B3C_hP18_186_2a3b_2ab_b-001
or PDF Version

Al$_{5}$C$_{3}$N ($E9_{4}$) Structure: A5B3C_hP18_186_2a3b_2ab_b-001

Picture of Structure; Click for Big Picture
Prototype Al$_{5}$C$_{3}$N
AFLOW prototype label A5B3C_hP18_186_2a3b_2ab_b-001
Strukturbericht designation $E9_{4}$
ICSD 14398
Pearson symbol hP18
Space group number 186
Space group symbol $P6_3mc$
AFLOW prototype command aflow --proto=A5B3C_hP18_186_2a3b_2ab_b-001
--params=$a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{6}, \allowbreak z_{7}, \allowbreak z_{8}, \allowbreak z_{9}$

Other compounds with this structure

U$_{2}$Al$_{3}$C$_{4}$


  • Space group $P6_{3}mc$ #186 allows for an arbitary placement of the origin of the $z$-axis. We set this by taking $z_{3} = 0$ for the C-I atom.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $z_{1} \, \mathbf{a}_{3}$ = $c z_{1} \,\mathbf{\hat{z}}$ (2a) Al I
$\mathbf{B_{2}}$ = $\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2a) Al I
$\mathbf{B_{3}}$ = $z_{2} \, \mathbf{a}_{3}$ = $c z_{2} \,\mathbf{\hat{z}}$ (2a) Al II
$\mathbf{B_{4}}$ = $\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2a) Al II
$\mathbf{B_{5}}$ = $z_{3} \, \mathbf{a}_{3}$ = $c z_{3} \,\mathbf{\hat{z}}$ (2a) C I
$\mathbf{B_{6}}$ = $\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2a) C I
$\mathbf{B_{7}}$ = $z_{4} \, \mathbf{a}_{3}$ = $c z_{4} \,\mathbf{\hat{z}}$ (2a) C II
$\mathbf{B_{8}}$ = $\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2a) C II
$\mathbf{B_{9}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (2b) Al III
$\mathbf{B_{10}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2b) Al III
$\mathbf{B_{11}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (2b) Al IV
$\mathbf{B_{12}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2b) Al IV
$\mathbf{B_{13}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (2b) Al V
$\mathbf{B_{14}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2b) Al V
$\mathbf{B_{15}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (2b) C III
$\mathbf{B_{16}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2b) C III
$\mathbf{B_{17}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (2b) N I
$\mathbf{B_{18}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2b) N I

References

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds (2013). ASM International.

Prototype Generator

aflow --proto=A5B3C_hP18_186_2a3b_2ab_b --params=$a,c/a,z_{1},z_{2},z_{3},z_{4},z_{5},z_{6},z_{7},z_{8},z_{9}$

Species:

Running:

Output: