Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A5B3_mP32_13_ef4g_ab2g-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/3J3M
or https://aflow.org/p/A5B3_mP32_13_ef4g_ab2g-001
or PDF Version

Room Temperature V$_{3}$O$_{5}$ Structure: A5B3_mP32_13_ef4g_ab2g-001

Picture of Structure; Click for Big Picture
Prototype O$_{5}$V$_{3}$
AFLOW prototype label A5B3_mP32_13_ef4g_ab2g-001
ICSD 16445
Pearson symbol mP32
Space group number 13
Space group symbol $P2/c$
AFLOW prototype command aflow --proto=A5B3_mP32_13_ef4g_ab2g-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak y_{3}, \allowbreak y_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}$

  • This is the ground state structure of V$_{3}$O$_{5}$. In the range 423-433K it transforms into oxyvanite, which is metastable at room temperature (Armbruster, 2009). V$_{3}$O$_{5}$ can also be found in the metastable form of anosovite, which has the Fe$_{2}$TiO$_{5}$ ($E4_{1}$) structure (Weber, 2012).
  • (Åsbrink, 1980) places the first two types of vanadium atoms on the (2c) and (2d) Wyckoff positions of space group $P2/c$ #13. We shifted the origin so that these atoms are on the (2a) and (2b) sites.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \cos{\beta} \,\mathbf{\hat{x}}+c \sin{\beta} \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) V I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \cos{\beta} \,\mathbf{\hat{x}}+\frac{1}{2}c \sin{\beta} \,\mathbf{\hat{z}}$ (2a) V I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}$ (2b) V II
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}\left(a + c \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \sin{\beta} \,\mathbf{\hat{z}}$ (2b) V II
$\mathbf{B_{5}}$ = $y_{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}c \cos{\beta} \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+\frac{1}{4}c \sin{\beta} \,\mathbf{\hat{z}}$ (2e) O I
$\mathbf{B_{6}}$ = $- y_{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}c \cos{\beta} \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}+\frac{3}{4}c \sin{\beta} \,\mathbf{\hat{z}}$ (2e) O I
$\mathbf{B_{7}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\left(\frac{a}{2} + \frac{c \cos{\beta}}{4}\right) \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+\frac{1}{4}c \sin{\beta} \,\mathbf{\hat{z}}$ (2f) O II
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\left(\frac{a}{2} + \frac{3 c \cos{\beta}}{4}\right) \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+\frac{3}{4}c \sin{\beta} \,\mathbf{\hat{z}}$ (2f) O II
$\mathbf{B_{9}}$ = $x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}+c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ (4g) O III
$\mathbf{B_{10}}$ = $- x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{5} + c \left(z_{5} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}- c \left(z_{5} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4g) O III
$\mathbf{B_{11}}$ = $- x_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- \left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}- c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ (4g) O III
$\mathbf{B_{12}}$ = $x_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{5} + c \left(z_{5} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4g) O III
$\mathbf{B_{13}}$ = $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}+c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ (4g) O IV
$\mathbf{B_{14}}$ = $- x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{6} + c \left(z_{6} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4g) O IV
$\mathbf{B_{15}}$ = $- x_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- \left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}- c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ (4g) O IV
$\mathbf{B_{16}}$ = $x_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{6} + c \left(z_{6} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4g) O IV
$\mathbf{B_{17}}$ = $x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}+c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ (4g) O V
$\mathbf{B_{18}}$ = $- x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{7} + c \left(z_{7} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}- c \left(z_{7} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4g) O V
$\mathbf{B_{19}}$ = $- x_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- \left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}- c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ (4g) O V
$\mathbf{B_{20}}$ = $x_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{7} + c \left(z_{7} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4g) O V
$\mathbf{B_{21}}$ = $x_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $\left(a x_{8} + c z_{8} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{8} \,\mathbf{\hat{y}}+c z_{8} \sin{\beta} \,\mathbf{\hat{z}}$ (4g) O VI
$\mathbf{B_{22}}$ = $- x_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{8} + c \left(z_{8} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{8} \,\mathbf{\hat{y}}- c \left(z_{8} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4g) O VI
$\mathbf{B_{23}}$ = $- x_{8} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $- \left(a x_{8} + c z_{8} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{8} \,\mathbf{\hat{y}}- c z_{8} \sin{\beta} \,\mathbf{\hat{z}}$ (4g) O VI
$\mathbf{B_{24}}$ = $x_{8} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{8} + c \left(z_{8} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4g) O VI
$\mathbf{B_{25}}$ = $x_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $\left(a x_{9} + c z_{9} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}+c z_{9} \sin{\beta} \,\mathbf{\hat{z}}$ (4g) V III
$\mathbf{B_{26}}$ = $- x_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{9} + c \left(z_{9} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}- c \left(z_{9} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4g) V III
$\mathbf{B_{27}}$ = $- x_{9} \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $- \left(a x_{9} + c z_{9} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{9} \,\mathbf{\hat{y}}- c z_{9} \sin{\beta} \,\mathbf{\hat{z}}$ (4g) V III
$\mathbf{B_{28}}$ = $x_{9} \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{9} + c \left(z_{9} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4g) V III
$\mathbf{B_{29}}$ = $x_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $\left(a x_{10} + c z_{10} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}+c z_{10} \sin{\beta} \,\mathbf{\hat{z}}$ (4g) V IV
$\mathbf{B_{30}}$ = $- x_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{10} + c \left(z_{10} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}- c \left(z_{10} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4g) V IV
$\mathbf{B_{31}}$ = $- x_{10} \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $- \left(a x_{10} + c z_{10} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{10} \,\mathbf{\hat{y}}- c z_{10} \sin{\beta} \,\mathbf{\hat{z}}$ (4g) V IV
$\mathbf{B_{32}}$ = $x_{10} \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{10} + c \left(z_{10} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4g) V IV

References

  • S. Åsbrink, The crystal structure of and valency distribution in the low-temperature modification of V$_{3}$O$_{5}$. The decisive importance of a few very weak reflexions in a crystal-structure determination, Acta Crystallogr. Sect. B 36, 1332–1339 (1980), doi:10.1107/S0567740880006036.
  • D. Weber, C. Wessel, C. Reimann, C. Schwickert, A. Müller, T. Ressler, R. Pöttgen, T. Bredow, R. Dronskowski, , and M. Lerch, Anosovite-Type V$_{3}$O$_{5}$: A New Binary Oxide of Vanadium 51, 8524–8529 (2012), doi:10.1021/ic301096d.

Found in

  • T. Armbruster, E. V. Galuskin, L. Z. Reznitsky, and E. V. Sklyarov, X-ray structural investigation of the oxyvanite (V$_{3}$O$_{5}$) - berdesinskiite (V$_{2}$TiO$_{5}$) series: V$^{4+}$ substituting for octahedrally coordinated Ti$^{4+}$, Eur. J. Mineral. 21, 885–891 (2009), doi:10.1127/0935-1221/2009/0021-1951.

Prototype Generator

aflow --proto=A5B3_mP32_13_ef4g_ab2g --params=$a,b/a,c/a,\beta,y_{3},y_{4},x_{5},y_{5},z_{5},x_{6},y_{6},z_{6},x_{7},y_{7},z_{7},x_{8},y_{8},z_{8},x_{9},y_{9},z_{9},x_{10},y_{10},z_{10}$

Species:

Running:

Output: