Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A6B2C17D4_hP58_194_ab2f_e_fh2k_2f-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/X8HZ
or https://aflow.org/p/A6B2C17D4_hP58_194_ab2f_e_fh2k_2f-001
or PDF Version

Ba$_{6}$Nd$_{2}$Ti$_{4}$O$_{17}$ Structure: A6B2C17D4_hP58_194_ab2f_e_fh2k_2f-001

Picture of Structure; Click for Big Picture
Prototype Ba$_{6}$Nd$_{2}$O$_{17}$Ti$_{4}$
AFLOW prototype label A6B2C17D4_hP58_194_ab2f_e_fh2k_2f-001
ICSD 96629
Pearson symbol hP58
Space group number 194
Space group symbol $P6_3/mmc$
AFLOW prototype command aflow --proto=A6B2C17D4_hP58_194_ab2f_e_fh2k_2f-001
--params=$a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{6}, \allowbreak z_{7}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak x_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak z_{11}$

Other compounds with this structure

Ba$_{6}$Y$_{2}$Ti$_{4}$O$_{17}$,  Ba$_{6}$Y$_{2}$Rh$_{2}$Ti$_{2}$O$_{17}$


  • (Xiaojun, 2002) refer to this as a perovskite-related structure.
  • The tables in (Xiaojun, 2002) do not properly label several of the Wyckoff positions in the structure. We inferred the correct Wyckoff positions from the given coordinates. The resulting distances between atoms agree with those found by the authors and with the ICSD entry.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Ba I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (2a) Ba I
$\mathbf{B_{3}}$ = $\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}c \,\mathbf{\hat{z}}$ (2b) Ba II
$\mathbf{B_{4}}$ = $\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}c \,\mathbf{\hat{z}}$ (2b) Ba II
$\mathbf{B_{5}}$ = $z_{3} \, \mathbf{a}_{3}$ = $c z_{3} \,\mathbf{\hat{z}}$ (4e) Nd I
$\mathbf{B_{6}}$ = $\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4e) Nd I
$\mathbf{B_{7}}$ = $- z_{3} \, \mathbf{a}_{3}$ = $- c z_{3} \,\mathbf{\hat{z}}$ (4e) Nd I
$\mathbf{B_{8}}$ = $- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- c \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4e) Nd I
$\mathbf{B_{9}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (4f) Ba III
$\mathbf{B_{10}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4f) Ba III
$\mathbf{B_{11}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (4f) Ba III
$\mathbf{B_{12}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4f) Ba III
$\mathbf{B_{13}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (4f) Ba IV
$\mathbf{B_{14}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4f) Ba IV
$\mathbf{B_{15}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (4f) Ba IV
$\mathbf{B_{16}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4f) Ba IV
$\mathbf{B_{17}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (4f) O I
$\mathbf{B_{18}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4f) O I
$\mathbf{B_{19}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (4f) O I
$\mathbf{B_{20}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4f) O I
$\mathbf{B_{21}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (4f) Ti I
$\mathbf{B_{22}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4f) Ti I
$\mathbf{B_{23}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (4f) Ti I
$\mathbf{B_{24}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4f) Ti I
$\mathbf{B_{25}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (4f) Ti II
$\mathbf{B_{26}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4f) Ti II
$\mathbf{B_{27}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (4f) Ti II
$\mathbf{B_{28}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4f) Ti II
$\mathbf{B_{29}}$ = $x_{9} \, \mathbf{a}_{1}+2 x_{9} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{9} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) O II
$\mathbf{B_{30}}$ = $- 2 x_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{9} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) O II
$\mathbf{B_{31}}$ = $x_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{9} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) O II
$\mathbf{B_{32}}$ = $- x_{9} \, \mathbf{a}_{1}- 2 x_{9} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{9} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) O II
$\mathbf{B_{33}}$ = $2 x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{9} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) O II
$\mathbf{B_{34}}$ = $- x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{9} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) O II
$\mathbf{B_{35}}$ = $x_{10} \, \mathbf{a}_{1}+2 x_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{10} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (12k) O III
$\mathbf{B_{36}}$ = $- 2 x_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{10} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (12k) O III
$\mathbf{B_{37}}$ = $x_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (12k) O III
$\mathbf{B_{38}}$ = $- x_{10} \, \mathbf{a}_{1}- 2 x_{10} \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{10} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12k) O III
$\mathbf{B_{39}}$ = $2 x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{10} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12k) O III
$\mathbf{B_{40}}$ = $- x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12k) O III
$\mathbf{B_{41}}$ = $2 x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{10} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (12k) O III
$\mathbf{B_{42}}$ = $- x_{10} \, \mathbf{a}_{1}- 2 x_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{10} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (12k) O III
$\mathbf{B_{43}}$ = $- x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (12k) O III
$\mathbf{B_{44}}$ = $- 2 x_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{10} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}- c \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12k) O III
$\mathbf{B_{45}}$ = $x_{10} \, \mathbf{a}_{1}+2 x_{10} \, \mathbf{a}_{2}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{10} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}- c \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12k) O III
$\mathbf{B_{46}}$ = $x_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{10} \,\mathbf{\hat{y}}- c \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12k) O III
$\mathbf{B_{47}}$ = $x_{11} \, \mathbf{a}_{1}+2 x_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{11} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (12k) O IV
$\mathbf{B_{48}}$ = $- 2 x_{11} \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{11} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (12k) O IV
$\mathbf{B_{49}}$ = $x_{11} \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (12k) O IV
$\mathbf{B_{50}}$ = $- x_{11} \, \mathbf{a}_{1}- 2 x_{11} \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{11} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12k) O IV
$\mathbf{B_{51}}$ = $2 x_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{11} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12k) O IV
$\mathbf{B_{52}}$ = $- x_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12k) O IV
$\mathbf{B_{53}}$ = $2 x_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{11} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ (12k) O IV
$\mathbf{B_{54}}$ = $- x_{11} \, \mathbf{a}_{1}- 2 x_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{11} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ (12k) O IV
$\mathbf{B_{55}}$ = $- x_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ (12k) O IV
$\mathbf{B_{56}}$ = $- 2 x_{11} \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{11} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{11} \,\mathbf{\hat{y}}- c \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12k) O IV
$\mathbf{B_{57}}$ = $x_{11} \, \mathbf{a}_{1}+2 x_{11} \, \mathbf{a}_{2}- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{11} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{11} \,\mathbf{\hat{y}}- c \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12k) O IV
$\mathbf{B_{58}}$ = $x_{11} \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{11} \,\mathbf{\hat{y}}- c \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12k) O IV

References

  • X. Kuang, X. Jing, C.-K. Loong, E. E. Lachowski, J. M. S. Skakle, and A. R. West, A New Hexagonal 12-Layer Perovskite-Related Structure:  Ba$_{6}$R$_{2}$Ti$_{4}$O$_{17}$ (R = Nd and Y), Chem. Mater. 14, 4359–4363 (2002), doi:10.1021/cm020374m.

Found in

  • L. T. Nguyen, D. B. Straus, Q. Zhang, and R. J. Cava, Widely spaced planes of magnetic dimers in the Ba$_{6}$Y$_{2}$Rh$_{2}$Ti$_{2}$O$_{17-\delta}$ hexagonal perovskite, Phys. Rev. Materials 5, 034419 (2021), doi:10.1103/PhysRevMaterials.5.034419.

Prototype Generator

aflow --proto=A6B2C17D4_hP58_194_ab2f_e_fh2k_2f --params=$a,c/a,z_{3},z_{4},z_{5},z_{6},z_{7},z_{8},x_{9},x_{10},z_{10},x_{11},z_{11}$

Species:

Running:

Output: