Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A6B2C3D_tI168_139_egikl2m_ejn_bh2n_acf-001

This structure originally had the label A6B2C3D_tI168_139_egikl2m_ejn_bh2n_acf. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/8AAX
or https://aflow.org/p/A6B2C3D_tI168_139_egikl2m_ejn_bh2n_acf-001
or PDF Version

K$_{3}$TlCl$_{6}\cdot$2H$_{2}$O ($J3_{1}$) Structure: A6B2C3D_tI168_139_egikl2m_ejn_bh2n_acf-001

Picture of Structure; Click for Big Picture
Prototype Cl$_{6}$(H$_{2}$O)$_{2}$K$_{3}$Tl
AFLOW prototype label A6B2C3D_tI168_139_egikl2m_ejn_bh2n_acf-001
Strukturbericht designation $J3_{1}$
ICSD 31681
Pearson symbol tI168
Space group number 139
Space group symbol $I4/mmm$
AFLOW prototype command aflow --proto=A6B2C3D_tI168_139_egikl2m_ejn_bh2n_acf-001
--params=$a, \allowbreak c/a, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak x_{9}, \allowbreak x_{10}, \allowbreak x_{11}, \allowbreak x_{12}, \allowbreak y_{12}, \allowbreak x_{13}, \allowbreak z_{13}, \allowbreak x_{14}, \allowbreak z_{14}, \allowbreak y_{15}, \allowbreak z_{15}, \allowbreak y_{16}, \allowbreak z_{16}, \allowbreak y_{17}, \allowbreak z_{17}$

  • The positions of the hydrogen atoms in the water molecules were not determined, so we only provide the positions of the oxygen atoms (labeled as H$_{2}$O).

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Tl I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (2b) K I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}$ (4c) Tl II
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}$ (4c) Tl II
$\mathbf{B_{5}}$ = $z_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}$ = $c z_{4} \,\mathbf{\hat{z}}$ (4e) Cl I
$\mathbf{B_{6}}$ = $- z_{4} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}$ = $- c z_{4} \,\mathbf{\hat{z}}$ (4e) Cl I
$\mathbf{B_{7}}$ = $z_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}$ = $c z_{5} \,\mathbf{\hat{z}}$ (4e) H I
$\mathbf{B_{8}}$ = $- z_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}$ = $- c z_{5} \,\mathbf{\hat{z}}$ (4e) H I
$\mathbf{B_{9}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8f) Tl III
$\mathbf{B_{10}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- \frac{1}{4}c \,\mathbf{\hat{z}}$ (8f) Tl III
$\mathbf{B_{11}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $- \frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8f) Tl III
$\mathbf{B_{12}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8f) Tl III
$\mathbf{B_{13}}$ = $\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (8g) Cl II
$\mathbf{B_{14}}$ = $z_{7} \, \mathbf{a}_{1}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{7} \,\mathbf{\hat{z}}$ (8g) Cl II
$\mathbf{B_{15}}$ = $- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (8g) Cl II
$\mathbf{B_{16}}$ = $- z_{7} \, \mathbf{a}_{1}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{7} \,\mathbf{\hat{z}}$ (8g) Cl II
$\mathbf{B_{17}}$ = $x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+2 x_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}$ (8h) K II
$\mathbf{B_{18}}$ = $- x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- 2 x_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}$ (8h) K II
$\mathbf{B_{19}}$ = $x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}$ = $- a x_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}$ (8h) K II
$\mathbf{B_{20}}$ = $- x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}$ = $a x_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}$ (8h) K II
$\mathbf{B_{21}}$ = $x_{9} \, \mathbf{a}_{2}+x_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}$ (8i) Cl III
$\mathbf{B_{22}}$ = $- x_{9} \, \mathbf{a}_{2}- x_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}$ (8i) Cl III
$\mathbf{B_{23}}$ = $x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{y}}$ (8i) Cl III
$\mathbf{B_{24}}$ = $- x_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{y}}$ (8i) Cl III
$\mathbf{B_{25}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+\left(x_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ (8j) H II
$\mathbf{B_{26}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}- \left(x_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ (8j) H II
$\mathbf{B_{27}}$ = $x_{10} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(x_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}$ (8j) H II
$\mathbf{B_{28}}$ = $- x_{10} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- \left(x_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}$ (8j) H II
$\mathbf{B_{29}}$ = $\left(x_{11} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{11} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(2 x_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}+a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (16k) Cl IV
$\mathbf{B_{30}}$ = $- \left(x_{11} - \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{11} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(2 x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (16k) Cl IV
$\mathbf{B_{31}}$ = $\left(x_{11} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{11} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{11} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (16k) Cl IV
$\mathbf{B_{32}}$ = $- \left(x_{11} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{11} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{11} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (16k) Cl IV
$\mathbf{B_{33}}$ = $- \left(x_{11} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{11} - \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(2 x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{11} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (16k) Cl IV
$\mathbf{B_{34}}$ = $\left(x_{11} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{11} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(2 x_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{11} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (16k) Cl IV
$\mathbf{B_{35}}$ = $- \left(x_{11} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{11} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (16k) Cl IV
$\mathbf{B_{36}}$ = $\left(x_{11} + \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{11} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}+a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (16k) Cl IV
$\mathbf{B_{37}}$ = $y_{12} \, \mathbf{a}_{1}+x_{12} \, \mathbf{a}_{2}+\left(x_{12} + y_{12}\right) \, \mathbf{a}_{3}$ = $a x_{12} \,\mathbf{\hat{x}}+a y_{12} \,\mathbf{\hat{y}}$ (16l) Cl V
$\mathbf{B_{38}}$ = $- y_{12} \, \mathbf{a}_{1}- x_{12} \, \mathbf{a}_{2}- \left(x_{12} + y_{12}\right) \, \mathbf{a}_{3}$ = $- a x_{12} \,\mathbf{\hat{x}}- a y_{12} \,\mathbf{\hat{y}}$ (16l) Cl V
$\mathbf{B_{39}}$ = $x_{12} \, \mathbf{a}_{1}- y_{12} \, \mathbf{a}_{2}+\left(x_{12} - y_{12}\right) \, \mathbf{a}_{3}$ = $- a y_{12} \,\mathbf{\hat{x}}+a x_{12} \,\mathbf{\hat{y}}$ (16l) Cl V
$\mathbf{B_{40}}$ = $- x_{12} \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}- \left(x_{12} - y_{12}\right) \, \mathbf{a}_{3}$ = $a y_{12} \,\mathbf{\hat{x}}- a x_{12} \,\mathbf{\hat{y}}$ (16l) Cl V
$\mathbf{B_{41}}$ = $y_{12} \, \mathbf{a}_{1}- x_{12} \, \mathbf{a}_{2}- \left(x_{12} - y_{12}\right) \, \mathbf{a}_{3}$ = $- a x_{12} \,\mathbf{\hat{x}}+a y_{12} \,\mathbf{\hat{y}}$ (16l) Cl V
$\mathbf{B_{42}}$ = $- y_{12} \, \mathbf{a}_{1}+x_{12} \, \mathbf{a}_{2}+\left(x_{12} - y_{12}\right) \, \mathbf{a}_{3}$ = $a x_{12} \,\mathbf{\hat{x}}- a y_{12} \,\mathbf{\hat{y}}$ (16l) Cl V
$\mathbf{B_{43}}$ = $x_{12} \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}+\left(x_{12} + y_{12}\right) \, \mathbf{a}_{3}$ = $a y_{12} \,\mathbf{\hat{x}}+a x_{12} \,\mathbf{\hat{y}}$ (16l) Cl V
$\mathbf{B_{44}}$ = $- x_{12} \, \mathbf{a}_{1}- y_{12} \, \mathbf{a}_{2}- \left(x_{12} + y_{12}\right) \, \mathbf{a}_{3}$ = $- a y_{12} \,\mathbf{\hat{x}}- a x_{12} \,\mathbf{\hat{y}}$ (16l) Cl V
$\mathbf{B_{45}}$ = $\left(x_{13} + z_{13}\right) \, \mathbf{a}_{1}+\left(x_{13} + z_{13}\right) \, \mathbf{a}_{2}+2 x_{13} \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (16m) Cl VI
$\mathbf{B_{46}}$ = $- \left(x_{13} - z_{13}\right) \, \mathbf{a}_{1}- \left(x_{13} - z_{13}\right) \, \mathbf{a}_{2}- 2 x_{13} \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}- a x_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (16m) Cl VI
$\mathbf{B_{47}}$ = $\left(x_{13} + z_{13}\right) \, \mathbf{a}_{1}- \left(x_{13} - z_{13}\right) \, \mathbf{a}_{2}$ = $- a x_{13} \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (16m) Cl VI
$\mathbf{B_{48}}$ = $- \left(x_{13} - z_{13}\right) \, \mathbf{a}_{1}+\left(x_{13} + z_{13}\right) \, \mathbf{a}_{2}$ = $a x_{13} \,\mathbf{\hat{x}}- a x_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (16m) Cl VI
$\mathbf{B_{49}}$ = $\left(x_{13} - z_{13}\right) \, \mathbf{a}_{1}- \left(x_{13} + z_{13}\right) \, \mathbf{a}_{2}$ = $- a x_{13} \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}- c z_{13} \,\mathbf{\hat{z}}$ (16m) Cl VI
$\mathbf{B_{50}}$ = $- \left(x_{13} + z_{13}\right) \, \mathbf{a}_{1}+\left(x_{13} - z_{13}\right) \, \mathbf{a}_{2}$ = $a x_{13} \,\mathbf{\hat{x}}- a x_{13} \,\mathbf{\hat{y}}- c z_{13} \,\mathbf{\hat{z}}$ (16m) Cl VI
$\mathbf{B_{51}}$ = $\left(x_{13} - z_{13}\right) \, \mathbf{a}_{1}+\left(x_{13} - z_{13}\right) \, \mathbf{a}_{2}+2 x_{13} \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}- c z_{13} \,\mathbf{\hat{z}}$ (16m) Cl VI
$\mathbf{B_{52}}$ = $- \left(x_{13} + z_{13}\right) \, \mathbf{a}_{1}- \left(x_{13} + z_{13}\right) \, \mathbf{a}_{2}- 2 x_{13} \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}- a x_{13} \,\mathbf{\hat{y}}- c z_{13} \,\mathbf{\hat{z}}$ (16m) Cl VI
$\mathbf{B_{53}}$ = $\left(x_{14} + z_{14}\right) \, \mathbf{a}_{1}+\left(x_{14} + z_{14}\right) \, \mathbf{a}_{2}+2 x_{14} \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{x}}+a x_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (16m) Cl VII
$\mathbf{B_{54}}$ = $- \left(x_{14} - z_{14}\right) \, \mathbf{a}_{1}- \left(x_{14} - z_{14}\right) \, \mathbf{a}_{2}- 2 x_{14} \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{x}}- a x_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (16m) Cl VII
$\mathbf{B_{55}}$ = $\left(x_{14} + z_{14}\right) \, \mathbf{a}_{1}- \left(x_{14} - z_{14}\right) \, \mathbf{a}_{2}$ = $- a x_{14} \,\mathbf{\hat{x}}+a x_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (16m) Cl VII
$\mathbf{B_{56}}$ = $- \left(x_{14} - z_{14}\right) \, \mathbf{a}_{1}+\left(x_{14} + z_{14}\right) \, \mathbf{a}_{2}$ = $a x_{14} \,\mathbf{\hat{x}}- a x_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (16m) Cl VII
$\mathbf{B_{57}}$ = $\left(x_{14} - z_{14}\right) \, \mathbf{a}_{1}- \left(x_{14} + z_{14}\right) \, \mathbf{a}_{2}$ = $- a x_{14} \,\mathbf{\hat{x}}+a x_{14} \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ (16m) Cl VII
$\mathbf{B_{58}}$ = $- \left(x_{14} + z_{14}\right) \, \mathbf{a}_{1}+\left(x_{14} - z_{14}\right) \, \mathbf{a}_{2}$ = $a x_{14} \,\mathbf{\hat{x}}- a x_{14} \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ (16m) Cl VII
$\mathbf{B_{59}}$ = $\left(x_{14} - z_{14}\right) \, \mathbf{a}_{1}+\left(x_{14} - z_{14}\right) \, \mathbf{a}_{2}+2 x_{14} \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{x}}+a x_{14} \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ (16m) Cl VII
$\mathbf{B_{60}}$ = $- \left(x_{14} + z_{14}\right) \, \mathbf{a}_{1}- \left(x_{14} + z_{14}\right) \, \mathbf{a}_{2}- 2 x_{14} \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{x}}- a x_{14} \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ (16m) Cl VII
$\mathbf{B_{61}}$ = $\left(y_{15} + z_{15}\right) \, \mathbf{a}_{1}+z_{15} \, \mathbf{a}_{2}+y_{15} \, \mathbf{a}_{3}$ = $a y_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (16n) H III
$\mathbf{B_{62}}$ = $- \left(y_{15} - z_{15}\right) \, \mathbf{a}_{1}+z_{15} \, \mathbf{a}_{2}- y_{15} \, \mathbf{a}_{3}$ = $- a y_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (16n) H III
$\mathbf{B_{63}}$ = $z_{15} \, \mathbf{a}_{1}- \left(y_{15} - z_{15}\right) \, \mathbf{a}_{2}- y_{15} \, \mathbf{a}_{3}$ = $- a y_{15} \,\mathbf{\hat{x}}+c z_{15} \,\mathbf{\hat{z}}$ (16n) H III
$\mathbf{B_{64}}$ = $z_{15} \, \mathbf{a}_{1}+\left(y_{15} + z_{15}\right) \, \mathbf{a}_{2}+y_{15} \, \mathbf{a}_{3}$ = $a y_{15} \,\mathbf{\hat{x}}+c z_{15} \,\mathbf{\hat{z}}$ (16n) H III
$\mathbf{B_{65}}$ = $\left(y_{15} - z_{15}\right) \, \mathbf{a}_{1}- z_{15} \, \mathbf{a}_{2}+y_{15} \, \mathbf{a}_{3}$ = $a y_{15} \,\mathbf{\hat{y}}- c z_{15} \,\mathbf{\hat{z}}$ (16n) H III
$\mathbf{B_{66}}$ = $- \left(y_{15} + z_{15}\right) \, \mathbf{a}_{1}- z_{15} \, \mathbf{a}_{2}- y_{15} \, \mathbf{a}_{3}$ = $- a y_{15} \,\mathbf{\hat{y}}- c z_{15} \,\mathbf{\hat{z}}$ (16n) H III
$\mathbf{B_{67}}$ = $- z_{15} \, \mathbf{a}_{1}+\left(y_{15} - z_{15}\right) \, \mathbf{a}_{2}+y_{15} \, \mathbf{a}_{3}$ = $a y_{15} \,\mathbf{\hat{x}}- c z_{15} \,\mathbf{\hat{z}}$ (16n) H III
$\mathbf{B_{68}}$ = $- z_{15} \, \mathbf{a}_{1}- \left(y_{15} + z_{15}\right) \, \mathbf{a}_{2}- y_{15} \, \mathbf{a}_{3}$ = $- a y_{15} \,\mathbf{\hat{x}}- c z_{15} \,\mathbf{\hat{z}}$ (16n) H III
$\mathbf{B_{69}}$ = $\left(y_{16} + z_{16}\right) \, \mathbf{a}_{1}+z_{16} \, \mathbf{a}_{2}+y_{16} \, \mathbf{a}_{3}$ = $a y_{16} \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (16n) K III
$\mathbf{B_{70}}$ = $- \left(y_{16} - z_{16}\right) \, \mathbf{a}_{1}+z_{16} \, \mathbf{a}_{2}- y_{16} \, \mathbf{a}_{3}$ = $- a y_{16} \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (16n) K III
$\mathbf{B_{71}}$ = $z_{16} \, \mathbf{a}_{1}- \left(y_{16} - z_{16}\right) \, \mathbf{a}_{2}- y_{16} \, \mathbf{a}_{3}$ = $- a y_{16} \,\mathbf{\hat{x}}+c z_{16} \,\mathbf{\hat{z}}$ (16n) K III
$\mathbf{B_{72}}$ = $z_{16} \, \mathbf{a}_{1}+\left(y_{16} + z_{16}\right) \, \mathbf{a}_{2}+y_{16} \, \mathbf{a}_{3}$ = $a y_{16} \,\mathbf{\hat{x}}+c z_{16} \,\mathbf{\hat{z}}$ (16n) K III
$\mathbf{B_{73}}$ = $\left(y_{16} - z_{16}\right) \, \mathbf{a}_{1}- z_{16} \, \mathbf{a}_{2}+y_{16} \, \mathbf{a}_{3}$ = $a y_{16} \,\mathbf{\hat{y}}- c z_{16} \,\mathbf{\hat{z}}$ (16n) K III
$\mathbf{B_{74}}$ = $- \left(y_{16} + z_{16}\right) \, \mathbf{a}_{1}- z_{16} \, \mathbf{a}_{2}- y_{16} \, \mathbf{a}_{3}$ = $- a y_{16} \,\mathbf{\hat{y}}- c z_{16} \,\mathbf{\hat{z}}$ (16n) K III
$\mathbf{B_{75}}$ = $- z_{16} \, \mathbf{a}_{1}+\left(y_{16} - z_{16}\right) \, \mathbf{a}_{2}+y_{16} \, \mathbf{a}_{3}$ = $a y_{16} \,\mathbf{\hat{x}}- c z_{16} \,\mathbf{\hat{z}}$ (16n) K III
$\mathbf{B_{76}}$ = $- z_{16} \, \mathbf{a}_{1}- \left(y_{16} + z_{16}\right) \, \mathbf{a}_{2}- y_{16} \, \mathbf{a}_{3}$ = $- a y_{16} \,\mathbf{\hat{x}}- c z_{16} \,\mathbf{\hat{z}}$ (16n) K III
$\mathbf{B_{77}}$ = $\left(y_{17} + z_{17}\right) \, \mathbf{a}_{1}+z_{17} \, \mathbf{a}_{2}+y_{17} \, \mathbf{a}_{3}$ = $a y_{17} \,\mathbf{\hat{y}}+c z_{17} \,\mathbf{\hat{z}}$ (16n) K IV
$\mathbf{B_{78}}$ = $- \left(y_{17} - z_{17}\right) \, \mathbf{a}_{1}+z_{17} \, \mathbf{a}_{2}- y_{17} \, \mathbf{a}_{3}$ = $- a y_{17} \,\mathbf{\hat{y}}+c z_{17} \,\mathbf{\hat{z}}$ (16n) K IV
$\mathbf{B_{79}}$ = $z_{17} \, \mathbf{a}_{1}- \left(y_{17} - z_{17}\right) \, \mathbf{a}_{2}- y_{17} \, \mathbf{a}_{3}$ = $- a y_{17} \,\mathbf{\hat{x}}+c z_{17} \,\mathbf{\hat{z}}$ (16n) K IV
$\mathbf{B_{80}}$ = $z_{17} \, \mathbf{a}_{1}+\left(y_{17} + z_{17}\right) \, \mathbf{a}_{2}+y_{17} \, \mathbf{a}_{3}$ = $a y_{17} \,\mathbf{\hat{x}}+c z_{17} \,\mathbf{\hat{z}}$ (16n) K IV
$\mathbf{B_{81}}$ = $\left(y_{17} - z_{17}\right) \, \mathbf{a}_{1}- z_{17} \, \mathbf{a}_{2}+y_{17} \, \mathbf{a}_{3}$ = $a y_{17} \,\mathbf{\hat{y}}- c z_{17} \,\mathbf{\hat{z}}$ (16n) K IV
$\mathbf{B_{82}}$ = $- \left(y_{17} + z_{17}\right) \, \mathbf{a}_{1}- z_{17} \, \mathbf{a}_{2}- y_{17} \, \mathbf{a}_{3}$ = $- a y_{17} \,\mathbf{\hat{y}}- c z_{17} \,\mathbf{\hat{z}}$ (16n) K IV
$\mathbf{B_{83}}$ = $- z_{17} \, \mathbf{a}_{1}+\left(y_{17} - z_{17}\right) \, \mathbf{a}_{2}+y_{17} \, \mathbf{a}_{3}$ = $a y_{17} \,\mathbf{\hat{x}}- c z_{17} \,\mathbf{\hat{z}}$ (16n) K IV
$\mathbf{B_{84}}$ = $- z_{17} \, \mathbf{a}_{1}- \left(y_{17} + z_{17}\right) \, \mathbf{a}_{2}- y_{17} \, \mathbf{a}_{3}$ = $- a y_{17} \,\mathbf{\hat{x}}- c z_{17} \,\mathbf{\hat{z}}$ (16n) K IV

References

  • J. L. Hoard and L. Goldstein, The Structure of Potassium Hexachlorothalliate Dihydrate, J. Chem. Phys. 3, 645–649 (1935), doi:10.1063/1.1749568.

Found in

  • C. Gottfried and F. Schossberger, eds., Strukturbericht Band III 1933-1935 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).

Prototype Generator

aflow --proto=A6B2C3D_tI168_139_egikl2m_ejn_bh2n_acf --params=$a,c/a,z_{4},z_{5},z_{7},x_{8},x_{9},x_{10},x_{11},x_{12},y_{12},x_{13},z_{13},x_{14},z_{14},y_{15},z_{15},y_{16},z_{16},y_{17},z_{17}$

Species:

Running:

Output: