AFLOW Prototype: A6B2C3D_tI168_139_egikl2m_ejn_bh2n_acf-001
This structure originally had the label A6B2C3D_tI168_139_egikl2m_ejn_bh2n_acf. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/8AAX
or
https://aflow.org/p/A6B2C3D_tI168_139_egikl2m_ejn_bh2n_acf-001
or
PDF Version
Prototype | Cl$_{6}$(H$_{2}$O)$_{2}$K$_{3}$Tl |
AFLOW prototype label | A6B2C3D_tI168_139_egikl2m_ejn_bh2n_acf-001 |
Strukturbericht designation | $J3_{1}$ |
ICSD | 31681 |
Pearson symbol | tI168 |
Space group number | 139 |
Space group symbol | $I4/mmm$ |
AFLOW prototype command |
aflow --proto=A6B2C3D_tI168_139_egikl2m_ejn_bh2n_acf-001
--params=$a, \allowbreak c/a, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak x_{9}, \allowbreak x_{10}, \allowbreak x_{11}, \allowbreak x_{12}, \allowbreak y_{12}, \allowbreak x_{13}, \allowbreak z_{13}, \allowbreak x_{14}, \allowbreak z_{14}, \allowbreak y_{15}, \allowbreak z_{15}, \allowbreak y_{16}, \allowbreak z_{16}, \allowbreak y_{17}, \allowbreak z_{17}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2a) | Tl I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}c \,\mathbf{\hat{z}}$ | (2b) | K I |
$\mathbf{B_{3}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}$ | (4c) | Tl II |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}$ | (4c) | Tl II |
$\mathbf{B_{5}}$ | = | $z_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}$ | = | $c z_{4} \,\mathbf{\hat{z}}$ | (4e) | Cl I |
$\mathbf{B_{6}}$ | = | $- z_{4} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}$ | = | $- c z_{4} \,\mathbf{\hat{z}}$ | (4e) | Cl I |
$\mathbf{B_{7}}$ | = | $z_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}$ | = | $c z_{5} \,\mathbf{\hat{z}}$ | (4e) | H I |
$\mathbf{B_{8}}$ | = | $- z_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}$ | = | $- c z_{5} \,\mathbf{\hat{z}}$ | (4e) | H I |
$\mathbf{B_{9}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8f) | Tl III |
$\mathbf{B_{10}}$ | = | $\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- \frac{1}{4}c \,\mathbf{\hat{z}}$ | (8f) | Tl III |
$\mathbf{B_{11}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}$ | = | $- \frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8f) | Tl III |
$\mathbf{B_{12}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8f) | Tl III |
$\mathbf{B_{13}}$ | = | $\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (8g) | Cl II |
$\mathbf{B_{14}}$ | = | $z_{7} \, \mathbf{a}_{1}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{7} \,\mathbf{\hat{z}}$ | (8g) | Cl II |
$\mathbf{B_{15}}$ | = | $- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ | (8g) | Cl II |
$\mathbf{B_{16}}$ | = | $- z_{7} \, \mathbf{a}_{1}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{7} \,\mathbf{\hat{z}}$ | (8g) | Cl II |
$\mathbf{B_{17}}$ | = | $x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+2 x_{8} \, \mathbf{a}_{3}$ | = | $a x_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}$ | (8h) | K II |
$\mathbf{B_{18}}$ | = | $- x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- 2 x_{8} \, \mathbf{a}_{3}$ | = | $- a x_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}$ | (8h) | K II |
$\mathbf{B_{19}}$ | = | $x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}$ | = | $- a x_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}$ | (8h) | K II |
$\mathbf{B_{20}}$ | = | $- x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}$ | = | $a x_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}$ | (8h) | K II |
$\mathbf{B_{21}}$ | = | $x_{9} \, \mathbf{a}_{2}+x_{9} \, \mathbf{a}_{3}$ | = | $a x_{9} \,\mathbf{\hat{x}}$ | (8i) | Cl III |
$\mathbf{B_{22}}$ | = | $- x_{9} \, \mathbf{a}_{2}- x_{9} \, \mathbf{a}_{3}$ | = | $- a x_{9} \,\mathbf{\hat{x}}$ | (8i) | Cl III |
$\mathbf{B_{23}}$ | = | $x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{3}$ | = | $a x_{9} \,\mathbf{\hat{y}}$ | (8i) | Cl III |
$\mathbf{B_{24}}$ | = | $- x_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{3}$ | = | $- a x_{9} \,\mathbf{\hat{y}}$ | (8i) | Cl III |
$\mathbf{B_{25}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+\left(x_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{10} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ | (8j) | H II |
$\mathbf{B_{26}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}- \left(x_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{10} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ | (8j) | H II |
$\mathbf{B_{27}}$ | = | $x_{10} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(x_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}$ | (8j) | H II |
$\mathbf{B_{28}}$ | = | $- x_{10} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- \left(x_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}$ | (8j) | H II |
$\mathbf{B_{29}}$ | = | $\left(x_{11} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{11} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(2 x_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{11} \,\mathbf{\hat{x}}+a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (16k) | Cl IV |
$\mathbf{B_{30}}$ | = | $- \left(x_{11} - \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{11} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(2 x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{11} \,\mathbf{\hat{x}}- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (16k) | Cl IV |
$\mathbf{B_{31}}$ | = | $\left(x_{11} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{11} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{11} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (16k) | Cl IV |
$\mathbf{B_{32}}$ | = | $- \left(x_{11} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{11} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{11} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (16k) | Cl IV |
$\mathbf{B_{33}}$ | = | $- \left(x_{11} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{11} - \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(2 x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{11} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (16k) | Cl IV |
$\mathbf{B_{34}}$ | = | $\left(x_{11} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{11} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(2 x_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{11} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (16k) | Cl IV |
$\mathbf{B_{35}}$ | = | $- \left(x_{11} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{11} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{11} \,\mathbf{\hat{x}}- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (16k) | Cl IV |
$\mathbf{B_{36}}$ | = | $\left(x_{11} + \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{11} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{11} \,\mathbf{\hat{x}}+a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (16k) | Cl IV |
$\mathbf{B_{37}}$ | = | $y_{12} \, \mathbf{a}_{1}+x_{12} \, \mathbf{a}_{2}+\left(x_{12} + y_{12}\right) \, \mathbf{a}_{3}$ | = | $a x_{12} \,\mathbf{\hat{x}}+a y_{12} \,\mathbf{\hat{y}}$ | (16l) | Cl V |
$\mathbf{B_{38}}$ | = | $- y_{12} \, \mathbf{a}_{1}- x_{12} \, \mathbf{a}_{2}- \left(x_{12} + y_{12}\right) \, \mathbf{a}_{3}$ | = | $- a x_{12} \,\mathbf{\hat{x}}- a y_{12} \,\mathbf{\hat{y}}$ | (16l) | Cl V |
$\mathbf{B_{39}}$ | = | $x_{12} \, \mathbf{a}_{1}- y_{12} \, \mathbf{a}_{2}+\left(x_{12} - y_{12}\right) \, \mathbf{a}_{3}$ | = | $- a y_{12} \,\mathbf{\hat{x}}+a x_{12} \,\mathbf{\hat{y}}$ | (16l) | Cl V |
$\mathbf{B_{40}}$ | = | $- x_{12} \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}- \left(x_{12} - y_{12}\right) \, \mathbf{a}_{3}$ | = | $a y_{12} \,\mathbf{\hat{x}}- a x_{12} \,\mathbf{\hat{y}}$ | (16l) | Cl V |
$\mathbf{B_{41}}$ | = | $y_{12} \, \mathbf{a}_{1}- x_{12} \, \mathbf{a}_{2}- \left(x_{12} - y_{12}\right) \, \mathbf{a}_{3}$ | = | $- a x_{12} \,\mathbf{\hat{x}}+a y_{12} \,\mathbf{\hat{y}}$ | (16l) | Cl V |
$\mathbf{B_{42}}$ | = | $- y_{12} \, \mathbf{a}_{1}+x_{12} \, \mathbf{a}_{2}+\left(x_{12} - y_{12}\right) \, \mathbf{a}_{3}$ | = | $a x_{12} \,\mathbf{\hat{x}}- a y_{12} \,\mathbf{\hat{y}}$ | (16l) | Cl V |
$\mathbf{B_{43}}$ | = | $x_{12} \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}+\left(x_{12} + y_{12}\right) \, \mathbf{a}_{3}$ | = | $a y_{12} \,\mathbf{\hat{x}}+a x_{12} \,\mathbf{\hat{y}}$ | (16l) | Cl V |
$\mathbf{B_{44}}$ | = | $- x_{12} \, \mathbf{a}_{1}- y_{12} \, \mathbf{a}_{2}- \left(x_{12} + y_{12}\right) \, \mathbf{a}_{3}$ | = | $- a y_{12} \,\mathbf{\hat{x}}- a x_{12} \,\mathbf{\hat{y}}$ | (16l) | Cl V |
$\mathbf{B_{45}}$ | = | $\left(x_{13} + z_{13}\right) \, \mathbf{a}_{1}+\left(x_{13} + z_{13}\right) \, \mathbf{a}_{2}+2 x_{13} \, \mathbf{a}_{3}$ | = | $a x_{13} \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ | (16m) | Cl VI |
$\mathbf{B_{46}}$ | = | $- \left(x_{13} - z_{13}\right) \, \mathbf{a}_{1}- \left(x_{13} - z_{13}\right) \, \mathbf{a}_{2}- 2 x_{13} \, \mathbf{a}_{3}$ | = | $- a x_{13} \,\mathbf{\hat{x}}- a x_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ | (16m) | Cl VI |
$\mathbf{B_{47}}$ | = | $\left(x_{13} + z_{13}\right) \, \mathbf{a}_{1}- \left(x_{13} - z_{13}\right) \, \mathbf{a}_{2}$ | = | $- a x_{13} \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ | (16m) | Cl VI |
$\mathbf{B_{48}}$ | = | $- \left(x_{13} - z_{13}\right) \, \mathbf{a}_{1}+\left(x_{13} + z_{13}\right) \, \mathbf{a}_{2}$ | = | $a x_{13} \,\mathbf{\hat{x}}- a x_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ | (16m) | Cl VI |
$\mathbf{B_{49}}$ | = | $\left(x_{13} - z_{13}\right) \, \mathbf{a}_{1}- \left(x_{13} + z_{13}\right) \, \mathbf{a}_{2}$ | = | $- a x_{13} \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}- c z_{13} \,\mathbf{\hat{z}}$ | (16m) | Cl VI |
$\mathbf{B_{50}}$ | = | $- \left(x_{13} + z_{13}\right) \, \mathbf{a}_{1}+\left(x_{13} - z_{13}\right) \, \mathbf{a}_{2}$ | = | $a x_{13} \,\mathbf{\hat{x}}- a x_{13} \,\mathbf{\hat{y}}- c z_{13} \,\mathbf{\hat{z}}$ | (16m) | Cl VI |
$\mathbf{B_{51}}$ | = | $\left(x_{13} - z_{13}\right) \, \mathbf{a}_{1}+\left(x_{13} - z_{13}\right) \, \mathbf{a}_{2}+2 x_{13} \, \mathbf{a}_{3}$ | = | $a x_{13} \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}- c z_{13} \,\mathbf{\hat{z}}$ | (16m) | Cl VI |
$\mathbf{B_{52}}$ | = | $- \left(x_{13} + z_{13}\right) \, \mathbf{a}_{1}- \left(x_{13} + z_{13}\right) \, \mathbf{a}_{2}- 2 x_{13} \, \mathbf{a}_{3}$ | = | $- a x_{13} \,\mathbf{\hat{x}}- a x_{13} \,\mathbf{\hat{y}}- c z_{13} \,\mathbf{\hat{z}}$ | (16m) | Cl VI |
$\mathbf{B_{53}}$ | = | $\left(x_{14} + z_{14}\right) \, \mathbf{a}_{1}+\left(x_{14} + z_{14}\right) \, \mathbf{a}_{2}+2 x_{14} \, \mathbf{a}_{3}$ | = | $a x_{14} \,\mathbf{\hat{x}}+a x_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ | (16m) | Cl VII |
$\mathbf{B_{54}}$ | = | $- \left(x_{14} - z_{14}\right) \, \mathbf{a}_{1}- \left(x_{14} - z_{14}\right) \, \mathbf{a}_{2}- 2 x_{14} \, \mathbf{a}_{3}$ | = | $- a x_{14} \,\mathbf{\hat{x}}- a x_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ | (16m) | Cl VII |
$\mathbf{B_{55}}$ | = | $\left(x_{14} + z_{14}\right) \, \mathbf{a}_{1}- \left(x_{14} - z_{14}\right) \, \mathbf{a}_{2}$ | = | $- a x_{14} \,\mathbf{\hat{x}}+a x_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ | (16m) | Cl VII |
$\mathbf{B_{56}}$ | = | $- \left(x_{14} - z_{14}\right) \, \mathbf{a}_{1}+\left(x_{14} + z_{14}\right) \, \mathbf{a}_{2}$ | = | $a x_{14} \,\mathbf{\hat{x}}- a x_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ | (16m) | Cl VII |
$\mathbf{B_{57}}$ | = | $\left(x_{14} - z_{14}\right) \, \mathbf{a}_{1}- \left(x_{14} + z_{14}\right) \, \mathbf{a}_{2}$ | = | $- a x_{14} \,\mathbf{\hat{x}}+a x_{14} \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ | (16m) | Cl VII |
$\mathbf{B_{58}}$ | = | $- \left(x_{14} + z_{14}\right) \, \mathbf{a}_{1}+\left(x_{14} - z_{14}\right) \, \mathbf{a}_{2}$ | = | $a x_{14} \,\mathbf{\hat{x}}- a x_{14} \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ | (16m) | Cl VII |
$\mathbf{B_{59}}$ | = | $\left(x_{14} - z_{14}\right) \, \mathbf{a}_{1}+\left(x_{14} - z_{14}\right) \, \mathbf{a}_{2}+2 x_{14} \, \mathbf{a}_{3}$ | = | $a x_{14} \,\mathbf{\hat{x}}+a x_{14} \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ | (16m) | Cl VII |
$\mathbf{B_{60}}$ | = | $- \left(x_{14} + z_{14}\right) \, \mathbf{a}_{1}- \left(x_{14} + z_{14}\right) \, \mathbf{a}_{2}- 2 x_{14} \, \mathbf{a}_{3}$ | = | $- a x_{14} \,\mathbf{\hat{x}}- a x_{14} \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ | (16m) | Cl VII |
$\mathbf{B_{61}}$ | = | $\left(y_{15} + z_{15}\right) \, \mathbf{a}_{1}+z_{15} \, \mathbf{a}_{2}+y_{15} \, \mathbf{a}_{3}$ | = | $a y_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ | (16n) | H III |
$\mathbf{B_{62}}$ | = | $- \left(y_{15} - z_{15}\right) \, \mathbf{a}_{1}+z_{15} \, \mathbf{a}_{2}- y_{15} \, \mathbf{a}_{3}$ | = | $- a y_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ | (16n) | H III |
$\mathbf{B_{63}}$ | = | $z_{15} \, \mathbf{a}_{1}- \left(y_{15} - z_{15}\right) \, \mathbf{a}_{2}- y_{15} \, \mathbf{a}_{3}$ | = | $- a y_{15} \,\mathbf{\hat{x}}+c z_{15} \,\mathbf{\hat{z}}$ | (16n) | H III |
$\mathbf{B_{64}}$ | = | $z_{15} \, \mathbf{a}_{1}+\left(y_{15} + z_{15}\right) \, \mathbf{a}_{2}+y_{15} \, \mathbf{a}_{3}$ | = | $a y_{15} \,\mathbf{\hat{x}}+c z_{15} \,\mathbf{\hat{z}}$ | (16n) | H III |
$\mathbf{B_{65}}$ | = | $\left(y_{15} - z_{15}\right) \, \mathbf{a}_{1}- z_{15} \, \mathbf{a}_{2}+y_{15} \, \mathbf{a}_{3}$ | = | $a y_{15} \,\mathbf{\hat{y}}- c z_{15} \,\mathbf{\hat{z}}$ | (16n) | H III |
$\mathbf{B_{66}}$ | = | $- \left(y_{15} + z_{15}\right) \, \mathbf{a}_{1}- z_{15} \, \mathbf{a}_{2}- y_{15} \, \mathbf{a}_{3}$ | = | $- a y_{15} \,\mathbf{\hat{y}}- c z_{15} \,\mathbf{\hat{z}}$ | (16n) | H III |
$\mathbf{B_{67}}$ | = | $- z_{15} \, \mathbf{a}_{1}+\left(y_{15} - z_{15}\right) \, \mathbf{a}_{2}+y_{15} \, \mathbf{a}_{3}$ | = | $a y_{15} \,\mathbf{\hat{x}}- c z_{15} \,\mathbf{\hat{z}}$ | (16n) | H III |
$\mathbf{B_{68}}$ | = | $- z_{15} \, \mathbf{a}_{1}- \left(y_{15} + z_{15}\right) \, \mathbf{a}_{2}- y_{15} \, \mathbf{a}_{3}$ | = | $- a y_{15} \,\mathbf{\hat{x}}- c z_{15} \,\mathbf{\hat{z}}$ | (16n) | H III |
$\mathbf{B_{69}}$ | = | $\left(y_{16} + z_{16}\right) \, \mathbf{a}_{1}+z_{16} \, \mathbf{a}_{2}+y_{16} \, \mathbf{a}_{3}$ | = | $a y_{16} \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ | (16n) | K III |
$\mathbf{B_{70}}$ | = | $- \left(y_{16} - z_{16}\right) \, \mathbf{a}_{1}+z_{16} \, \mathbf{a}_{2}- y_{16} \, \mathbf{a}_{3}$ | = | $- a y_{16} \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ | (16n) | K III |
$\mathbf{B_{71}}$ | = | $z_{16} \, \mathbf{a}_{1}- \left(y_{16} - z_{16}\right) \, \mathbf{a}_{2}- y_{16} \, \mathbf{a}_{3}$ | = | $- a y_{16} \,\mathbf{\hat{x}}+c z_{16} \,\mathbf{\hat{z}}$ | (16n) | K III |
$\mathbf{B_{72}}$ | = | $z_{16} \, \mathbf{a}_{1}+\left(y_{16} + z_{16}\right) \, \mathbf{a}_{2}+y_{16} \, \mathbf{a}_{3}$ | = | $a y_{16} \,\mathbf{\hat{x}}+c z_{16} \,\mathbf{\hat{z}}$ | (16n) | K III |
$\mathbf{B_{73}}$ | = | $\left(y_{16} - z_{16}\right) \, \mathbf{a}_{1}- z_{16} \, \mathbf{a}_{2}+y_{16} \, \mathbf{a}_{3}$ | = | $a y_{16} \,\mathbf{\hat{y}}- c z_{16} \,\mathbf{\hat{z}}$ | (16n) | K III |
$\mathbf{B_{74}}$ | = | $- \left(y_{16} + z_{16}\right) \, \mathbf{a}_{1}- z_{16} \, \mathbf{a}_{2}- y_{16} \, \mathbf{a}_{3}$ | = | $- a y_{16} \,\mathbf{\hat{y}}- c z_{16} \,\mathbf{\hat{z}}$ | (16n) | K III |
$\mathbf{B_{75}}$ | = | $- z_{16} \, \mathbf{a}_{1}+\left(y_{16} - z_{16}\right) \, \mathbf{a}_{2}+y_{16} \, \mathbf{a}_{3}$ | = | $a y_{16} \,\mathbf{\hat{x}}- c z_{16} \,\mathbf{\hat{z}}$ | (16n) | K III |
$\mathbf{B_{76}}$ | = | $- z_{16} \, \mathbf{a}_{1}- \left(y_{16} + z_{16}\right) \, \mathbf{a}_{2}- y_{16} \, \mathbf{a}_{3}$ | = | $- a y_{16} \,\mathbf{\hat{x}}- c z_{16} \,\mathbf{\hat{z}}$ | (16n) | K III |
$\mathbf{B_{77}}$ | = | $\left(y_{17} + z_{17}\right) \, \mathbf{a}_{1}+z_{17} \, \mathbf{a}_{2}+y_{17} \, \mathbf{a}_{3}$ | = | $a y_{17} \,\mathbf{\hat{y}}+c z_{17} \,\mathbf{\hat{z}}$ | (16n) | K IV |
$\mathbf{B_{78}}$ | = | $- \left(y_{17} - z_{17}\right) \, \mathbf{a}_{1}+z_{17} \, \mathbf{a}_{2}- y_{17} \, \mathbf{a}_{3}$ | = | $- a y_{17} \,\mathbf{\hat{y}}+c z_{17} \,\mathbf{\hat{z}}$ | (16n) | K IV |
$\mathbf{B_{79}}$ | = | $z_{17} \, \mathbf{a}_{1}- \left(y_{17} - z_{17}\right) \, \mathbf{a}_{2}- y_{17} \, \mathbf{a}_{3}$ | = | $- a y_{17} \,\mathbf{\hat{x}}+c z_{17} \,\mathbf{\hat{z}}$ | (16n) | K IV |
$\mathbf{B_{80}}$ | = | $z_{17} \, \mathbf{a}_{1}+\left(y_{17} + z_{17}\right) \, \mathbf{a}_{2}+y_{17} \, \mathbf{a}_{3}$ | = | $a y_{17} \,\mathbf{\hat{x}}+c z_{17} \,\mathbf{\hat{z}}$ | (16n) | K IV |
$\mathbf{B_{81}}$ | = | $\left(y_{17} - z_{17}\right) \, \mathbf{a}_{1}- z_{17} \, \mathbf{a}_{2}+y_{17} \, \mathbf{a}_{3}$ | = | $a y_{17} \,\mathbf{\hat{y}}- c z_{17} \,\mathbf{\hat{z}}$ | (16n) | K IV |
$\mathbf{B_{82}}$ | = | $- \left(y_{17} + z_{17}\right) \, \mathbf{a}_{1}- z_{17} \, \mathbf{a}_{2}- y_{17} \, \mathbf{a}_{3}$ | = | $- a y_{17} \,\mathbf{\hat{y}}- c z_{17} \,\mathbf{\hat{z}}$ | (16n) | K IV |
$\mathbf{B_{83}}$ | = | $- z_{17} \, \mathbf{a}_{1}+\left(y_{17} - z_{17}\right) \, \mathbf{a}_{2}+y_{17} \, \mathbf{a}_{3}$ | = | $a y_{17} \,\mathbf{\hat{x}}- c z_{17} \,\mathbf{\hat{z}}$ | (16n) | K IV |
$\mathbf{B_{84}}$ | = | $- z_{17} \, \mathbf{a}_{1}- \left(y_{17} + z_{17}\right) \, \mathbf{a}_{2}- y_{17} \, \mathbf{a}_{3}$ | = | $- a y_{17} \,\mathbf{\hat{x}}- c z_{17} \,\mathbf{\hat{z}}$ | (16n) | K IV |