AFLOW Prototype: A6B5_oI44_71_egkl_fghl-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/Q45R
or
https://aflow.org/p/A6B5_oI44_71_egkl_fghl-001
or
PDF Version
Prototype | Nb$_{6}$Sn$_{5}$ |
AFLOW prototype label | A6B5_oI44_71_egkl_fghl-001 |
ICSD | 105232 |
Pearson symbol | oI44 |
Space group number | 71 |
Space group symbol | $Immm$ |
AFLOW prototype command |
aflow --proto=A6B5_oI44_71_egkl_fghl-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak y_{3}, \allowbreak y_{4}, \allowbreak y_{5}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak y_{8}, \allowbreak z_{8}$ |
Ti$_{6}$Sn$_{5}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ | = | $a x_{1} \,\mathbf{\hat{x}}$ | (4e) | Nb I |
$\mathbf{B_{2}}$ | = | $- x_{1} \, \mathbf{a}_{2}- x_{1} \, \mathbf{a}_{3}$ | = | $- a x_{1} \,\mathbf{\hat{x}}$ | (4e) | Nb I |
$\mathbf{B_{3}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{2} \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}$ | (4f) | Sn I |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{2} \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}$ | (4f) | Sn I |
$\mathbf{B_{5}}$ | = | $y_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{3}$ | = | $b y_{3} \,\mathbf{\hat{y}}$ | (4g) | Nb II |
$\mathbf{B_{6}}$ | = | $- y_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{3}$ | = | $- b y_{3} \,\mathbf{\hat{y}}$ | (4g) | Nb II |
$\mathbf{B_{7}}$ | = | $y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{3}$ | = | $b y_{4} \,\mathbf{\hat{y}}$ | (4g) | Sn II |
$\mathbf{B_{8}}$ | = | $- y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{3}$ | = | $- b y_{4} \,\mathbf{\hat{y}}$ | (4g) | Sn II |
$\mathbf{B_{9}}$ | = | $\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ | = | $b y_{5} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4h) | Sn III |
$\mathbf{B_{10}}$ | = | $- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ | = | $- b y_{5} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4h) | Sn III |
$\mathbf{B_{11}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8k) | Nb III |
$\mathbf{B_{12}}$ | = | $\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}- \frac{1}{4}c \,\mathbf{\hat{z}}$ | (8k) | Nb III |
$\mathbf{B_{13}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{4}b \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8k) | Nb III |
$\mathbf{B_{14}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}$ | = | $- \frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8k) | Nb III |
$\mathbf{B_{15}}$ | = | $\left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}+y_{7} \, \mathbf{a}_{3}$ | = | $b y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (8l) | Nb IV |
$\mathbf{B_{16}}$ | = | $- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}- y_{7} \, \mathbf{a}_{3}$ | = | $- b y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (8l) | Nb IV |
$\mathbf{B_{17}}$ | = | $\left(y_{7} - z_{7}\right) \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}+y_{7} \, \mathbf{a}_{3}$ | = | $b y_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ | (8l) | Nb IV |
$\mathbf{B_{18}}$ | = | $- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}- y_{7} \, \mathbf{a}_{3}$ | = | $- b y_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ | (8l) | Nb IV |
$\mathbf{B_{19}}$ | = | $\left(y_{8} + z_{8}\right) \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}+y_{8} \, \mathbf{a}_{3}$ | = | $b y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (8l) | Sn IV |
$\mathbf{B_{20}}$ | = | $- \left(y_{8} - z_{8}\right) \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}- y_{8} \, \mathbf{a}_{3}$ | = | $- b y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (8l) | Sn IV |
$\mathbf{B_{21}}$ | = | $\left(y_{8} - z_{8}\right) \, \mathbf{a}_{1}- z_{8} \, \mathbf{a}_{2}+y_{8} \, \mathbf{a}_{3}$ | = | $b y_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ | (8l) | Sn IV |
$\mathbf{B_{22}}$ | = | $- \left(y_{8} + z_{8}\right) \, \mathbf{a}_{1}- z_{8} \, \mathbf{a}_{2}- y_{8} \, \mathbf{a}_{3}$ | = | $- b y_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ | (8l) | Sn IV |