AFLOW Prototype: A6BC_oC32_67_no_c_g-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/PLRV
or
https://aflow.org/p/A6BC_oC32_67_no_c_g-001
or
PDF Version
Prototype | RbPaF$_{6}$ |
AFLOW prototype label | A6BC_oC32_67_no_c_g-001 |
ICSD | 36078 |
Pearson symbol | oC32 |
Space group number | 67 |
Space group symbol | $Cmme$ |
AFLOW prototype command |
aflow --proto=A6BC_oC32_67_no_c_g-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}$ |
SrTbF$_{6}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (4c) | Pa I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}$ | (4c) | Pa I |
$\mathbf{B_{3}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{4}b \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ | (4g) | Rb I |
$\mathbf{B_{4}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ | (4g) | Rb I |
$\mathbf{B_{5}}$ | = | $\left(x_{3} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- \frac{1}{4}b \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (8n) | F I |
$\mathbf{B_{6}}$ | = | $- \left(x_{3} - \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{4}\right) \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- \frac{1}{4}b \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (8n) | F I |
$\mathbf{B_{7}}$ | = | $- \left(x_{3} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{3} - \frac{3}{4}\right) \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ | (8n) | F I |
$\mathbf{B_{8}}$ | = | $\left(x_{3} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{3} + \frac{3}{4}\right) \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ | (8n) | F I |
$\mathbf{B_{9}}$ | = | $\left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + y_{4}\right) \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (16o) | F II |
$\mathbf{B_{10}}$ | = | $\left(- x_{4} + y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{4} + y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (16o) | F II |
$\mathbf{B_{11}}$ | = | $- \left(x_{4} + y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{4} + y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (16o) | F II |
$\mathbf{B_{12}}$ | = | $\left(x_{4} + y_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (16o) | F II |
$\mathbf{B_{13}}$ | = | $- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (16o) | F II |
$\mathbf{B_{14}}$ | = | $\left(x_{4} - y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{4} + y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (16o) | F II |
$\mathbf{B_{15}}$ | = | $\left(x_{4} + y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{4} - y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (16o) | F II |
$\mathbf{B_{16}}$ | = | $- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (16o) | F II |