Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A6B_cF224_228_h_c-001

This structure originally had the label A6B_cF224_228_h_c. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/MSL9
or https://aflow.org/p/A6B_cF224_228_h_c-001
or PDF Version

Te[OH]$_{6}$ Structure (Obsolete): A6B_cF224_228_h_c-001

Picture of Structure; Click for Big Picture
Prototype H$_{6}$O$_{6}$Te
AFLOW prototype label A6B_cF224_228_h_c-001
ICSD none
Pearson symbol cF224
Space group number 228
Space group symbol $Fd\overline{3}c$
AFLOW prototype command aflow --proto=A6B_cF224_228_h_c-001
--params=$a, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}$

  • (Kirckpatrick, 1926) did not find the locations of the hydrogen atoms. When these were located by (Mullica, 1980) it was found that the true structure is in space group $F4_{1}32$ #210.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (32c) Te I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ (32c) Te I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (32c) Te I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (32c) Te I
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (32c) Te I
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (32c) Te I
$\mathbf{B_{7}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (32c) Te I
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (32c) Te I
$\mathbf{B_{9}}$ = $\left(- x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}+a z_{2} \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{10}}$ = $\left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(- x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + y_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a z_{2} \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{11}}$ = $\left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + y_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}- a \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{12}}$ = $- \left(x_{2} + y_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{13}}$ = $\left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{1}+\left(- x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $a z_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a y_{2} \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{14}}$ = $- \left(x_{2} + y_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(- x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $a z_{2} \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{15}}$ = $\left(- x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + y_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a y_{2} \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{16}}$ = $\left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + y_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{17}}$ = $\left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{2}+\left(- x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{x}}+a z_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{18}}$ = $\left(- x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + y_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a z_{2} \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{19}}$ = $- \left(x_{2} + y_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{x}}- a \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{20}}$ = $\left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + y_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{21}}$ = $\left(x_{2} - y_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - y_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{22}}$ = $- \left(x_{2} - y_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - y_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + y_{2} - z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{23}}$ = $- \left(x_{2} + y_{2} - z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} - y_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{24}}$ = $\left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + y_{2} - z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{2} - y_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{25}}$ = $- \left(x_{2} + y_{2} - z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - y_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{26}}$ = $\left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - y_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + y_{2} - z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{27}}$ = $\left(x_{2} - y_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + y_{2} - z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{2} - y_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{28}}$ = $- \left(x_{2} - y_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} - y_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{29}}$ = $- \left(x_{2} - y_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + y_{2} - z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{30}}$ = $\left(x_{2} - y_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + y_{2} - z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{31}}$ = $\left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - y_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{2} - y_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{32}}$ = $- \left(x_{2} + y_{2} - z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - y_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{2} - y_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{33}}$ = $\left(x_{2} - y_{2} - z_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}- a z_{2} \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{34}}$ = $- \left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - y_{2} - z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a z_{2} \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{35}}$ = $- \left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{2} - y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}+a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{36}}$ = $\left(x_{2} + y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{37}}$ = $- \left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - y_{2} - z_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $- a z_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}- a y_{2} \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{38}}$ = $\left(x_{2} + y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} - y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $- a z_{2} \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{39}}$ = $\left(x_{2} - y_{2} - z_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a y_{2} \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{40}}$ = $- \left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}+a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{41}}$ = $- \left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} - y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{x}}- a z_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{42}}$ = $\left(x_{2} - y_{2} - z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a z_{2} \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{43}}$ = $\left(x_{2} + y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - y_{2} - z_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{x}}+a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{44}}$ = $- \left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{45}}$ = $\left(- x_{2} + y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{46}}$ = $\left(x_{2} - y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{2} + y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + y_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{47}}$ = $\left(x_{2} + y_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} - y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{48}}$ = $- \left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + y_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{2} + y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{49}}$ = $\left(x_{2} + y_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{2} + y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{50}}$ = $- \left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + y_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{51}}$ = $\left(- x_{2} + y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + y_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{2} - y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{52}}$ = $\left(x_{2} - y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(- x_{2} + y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{53}}$ = $\left(x_{2} - y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + y_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{54}}$ = $\left(- x_{2} + y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + y_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{55}}$ = $- \left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(- x_{2} + y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{2} - y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{56}}$ = $\left(x_{2} + y_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{2} + y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O I

References

  • L. M. Kirkpatrick and L. Pauling, Über die Kristallstruktur der kubischen Tellursäure, Z. Krystallogr. 63, 502–506 (1926), doi:10.1524/zkri.1926.63.1.502.
  • D. F. Mullica, J. D. Korp, W. O. Milligan, G. W. Beall, and I. Bernal, Neutron structural refinement of cubic orthotelluric acid, Acta Crystallogr. Sect. B 36, 2565–2570 (1980), doi:10.1107/S0567740880009454.

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds (2013). ASM International.

Prototype Generator

aflow --proto=A6B_cF224_228_h_c --params=$a,x_{2},y_{2},z_{2}$

Species:

Running:

Output: