Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A6B_oC28_63_efg_c-001

This structure originally had the label A6B_oC28_63_efg_c. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/386R
or https://aflow.org/p/A6B_oC28_63_efg_c-001
or PDF Version

MnAl$_{6}$ ($D2_{h}$) Structure: A6B_oC28_63_efg_c-001

Picture of Structure; Click for Big Picture
Prototype Al$_{6}$Mn
AFLOW prototype label A6B_oC28_63_efg_c-001
Strukturbericht designation $D2_{h}$
ICSD 57973
Pearson symbol oC28
Space group number 63
Space group symbol $Cmcm$
AFLOW prototype command aflow --proto=A6B_oC28_63_efg_c-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak y_{1}, \allowbreak x_{2}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}$

Other compounds with this structure

FeAl$_{6}$,  ReAl$_{6}$,  TcAl$_{6}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $- y_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $b y_{1} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4c) Mn I
$\mathbf{B_{2}}$ = $y_{1} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- b y_{1} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (4c) Mn I
$\mathbf{B_{3}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}$ = $a x_{2} \,\mathbf{\hat{x}}$ (8e) Al I
$\mathbf{B_{4}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8e) Al I
$\mathbf{B_{5}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}$ = $- a x_{2} \,\mathbf{\hat{x}}$ (8e) Al I
$\mathbf{B_{6}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8e) Al I
$\mathbf{B_{7}}$ = $- y_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $b y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (8f) Al II
$\mathbf{B_{8}}$ = $y_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) Al II
$\mathbf{B_{9}}$ = $- y_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $b y_{3} \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) Al II
$\mathbf{B_{10}}$ = $y_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- b y_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (8f) Al II
$\mathbf{B_{11}}$ = $\left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + y_{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8g) Al III
$\mathbf{B_{12}}$ = $- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (8g) Al III
$\mathbf{B_{13}}$ = $- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8g) Al III
$\mathbf{B_{14}}$ = $\left(x_{4} + y_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (8g) Al III

References

  • A. Kontio and P. Coppens, New study of the structure of MnAl$_{6}$, Acta Crystallogr. Sect. B 37, 433–435 (1981), doi:10.1107/S0567740881003191.

Prototype Generator

aflow --proto=A6B_oC28_63_efg_c --params=$a,b/a,c/a,y_{1},x_{2},y_{3},z_{3},x_{4},y_{4}$

Species:

Running:

Output: