Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A7B2_hR18_166_a2cdh_2c-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/VGKE
or https://aflow.org/p/A7B2_hR18_166_a2cdh_2c-001
or PDF Version

Er$_{2}$Co$_{7}$ Structure: A7B2_hR18_166_a2cdh_2c-001

Picture of Structure; Click for Big Picture
Prototype Co$_{7}$Er$_{2}$
AFLOW prototype label A7B2_hR18_166_a2cdh_2c-001
ICSD 102366
Pearson symbol hR18
Space group number 166
Space group symbol $R\overline{3}m$
AFLOW prototype command aflow --proto=A7B2_hR18_166_a2cdh_2c-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{7}, \allowbreak z_{7}$

Other compounds with this structure

Dy$_{2}$Co$_{7}$,  Er$_{2}$Ni$_{7}$,  Gd$_{2}$Co$_{7}$,  Gd$_{2}$Ni$_{7}$,  Ho$_{2}$Co$_{7}$,  La$_{2}$Ni$_{7}$,  Lu$_{2}$Co$_{7}$,  Tb$_{2}$Co$_{7}$,  Th$_{2}$Fe$_{7}$,  Th$_{2}$Ni$_{7}$,  Tm$_{2}$Co$_{7}$,  Y$_{2}$Co$_{7}$,  Y$_{2}$Ni$_{7}$


  • The ICSD lists Gd$_{2}$Co$_{7}$ as the prototype, but (Ostertag, 1967) only gives atomic coordinates for Er$_{2}$Co$_{7}$, so we will use that instead.
  • Hexagonal settings of this structure can be obtained with the option --hex.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{\sqrt{3}}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Co I
$\mathbf{B_{2}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $c x_{2} \,\mathbf{\hat{z}}$ (2c) Co II
$\mathbf{B_{3}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- c x_{2} \,\mathbf{\hat{z}}$ (2c) Co II
$\mathbf{B_{4}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $c x_{3} \,\mathbf{\hat{z}}$ (2c) Co III
$\mathbf{B_{5}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- c x_{3} \,\mathbf{\hat{z}}$ (2c) Co III
$\mathbf{B_{6}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $c x_{4} \,\mathbf{\hat{z}}$ (2c) Er I
$\mathbf{B_{7}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $- c x_{4} \,\mathbf{\hat{z}}$ (2c) Er I
$\mathbf{B_{8}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $c x_{5} \,\mathbf{\hat{z}}$ (2c) Er II
$\mathbf{B_{9}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $- c x_{5} \,\mathbf{\hat{z}}$ (2c) Er II
$\mathbf{B_{10}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{12}a \,\mathbf{\hat{y}}+\frac{1}{6}c \,\mathbf{\hat{z}}$ (3d) Co IV
$\mathbf{B_{11}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{6}c \,\mathbf{\hat{z}}$ (3d) Co IV
$\mathbf{B_{12}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $- \frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{12}a \,\mathbf{\hat{y}}+\frac{1}{6}c \,\mathbf{\hat{z}}$ (3d) Co IV
$\mathbf{B_{13}}$ = $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6h) Co V
$\mathbf{B_{14}}$ = $z_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6h) Co V
$\mathbf{B_{15}}$ = $x_{7} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $- \frac{1}{\sqrt{3}}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6h) Co V
$\mathbf{B_{16}}$ = $- z_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6h) Co V
$\mathbf{B_{17}}$ = $- x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6h) Co V
$\mathbf{B_{18}}$ = $- x_{7} \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $\frac{1}{\sqrt{3}}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6h) Co V

References

  • W. Ostertag, The crystal structure of Er$_{2}$Co$_{7}$ and other rare earth-cobalt compounds R$_{2}$Co$_{7}$ (R = Gd, Tb, Dy, Ho, Tm, Lu, Y), J. Less-Common Met. 13, 385–390 (1967), doi:10.1016/0022-5088(67)90032-X.

Prototype Generator

aflow --proto=A7B2_hR18_166_a2cdh_2c --params=$a,c/a,x_{2},x_{3},x_{4},x_{5},x_{7},z_{7}$

Species:

Running:

Output: