Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A7B3C2_tI24_139_aeg_be_e-001

This structure originally had the label A7B3C2_tI24_139_aeg_be_e. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/PDHZ
or https://aflow.org/p/A7B3C2_tI24_139_aeg_be_e-001
or PDF Version

Sr$_{3}$Ti$_{2}$O$_{7}$ Structure: A7B3C2_tI24_139_aeg_be_e-001

Picture of Structure; Click for Big Picture
Prototype O$_{7}$Sr$_{3}$Ti$_{2}$
AFLOW prototype label A7B3C2_tI24_139_aeg_be_e-001
ICSD 34629
Pearson symbol tI24
Space group number 139
Space group symbol $I4/mmm$
AFLOW prototype command aflow --proto=A7B3C2_tI24_139_aeg_be_e-001
--params=$a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{6}$

Other compounds with this structure

Ca$_{3}$Ti$_{2}$O$_{7}$,  Sr$_{3}$Ru$_{2}$O$_{7}$,  BaLa$_{2}$Fe$_{2}$O$_{7}$,  SrTb$_{2}$Fe$_{2}$O$_{7}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) O I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (2b) Sr I
$\mathbf{B_{3}}$ = $z_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}$ = $c z_{3} \,\mathbf{\hat{z}}$ (4e) O II
$\mathbf{B_{4}}$ = $- z_{3} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}$ = $- c z_{3} \,\mathbf{\hat{z}}$ (4e) O II
$\mathbf{B_{5}}$ = $z_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}$ = $c z_{4} \,\mathbf{\hat{z}}$ (4e) Sr II
$\mathbf{B_{6}}$ = $- z_{4} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}$ = $- c z_{4} \,\mathbf{\hat{z}}$ (4e) Sr II
$\mathbf{B_{7}}$ = $z_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}$ = $c z_{5} \,\mathbf{\hat{z}}$ (4e) Ti I
$\mathbf{B_{8}}$ = $- z_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}$ = $- c z_{5} \,\mathbf{\hat{z}}$ (4e) Ti I
$\mathbf{B_{9}}$ = $\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (8g) O III
$\mathbf{B_{10}}$ = $z_{6} \, \mathbf{a}_{1}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{6} \,\mathbf{\hat{z}}$ (8g) O III
$\mathbf{B_{11}}$ = $- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (8g) O III
$\mathbf{B_{12}}$ = $- z_{6} \, \mathbf{a}_{1}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{6} \,\mathbf{\hat{z}}$ (8g) O III

References

  • S. N. Ruddlesden and P. Popper, The compound Sr$_{3}$Ti$_{2}$O$_{7}$ and its structure, Acta Cryst. 11, 54–55 (1958), doi:10.1107/S0365110X58000128.

Found in

  • Wikipedia, Ruddlesden-Popper phase. A$_3$B$_2$X$_7$ series.

Prototype Generator

aflow --proto=A7B3C2_tI24_139_aeg_be_e --params=$a,c/a,z_{3},z_{4},z_{5},z_{6}$

Species:

Running:

Output: