AFLOW Prototype: A8B5_mP13_6_5a3b_2a3b-001
This structure originally had the label A8B5_mP13_6_a7b_3a2b. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
Links to this page
https://aflow.org/p/LEL6
or
https://aflow.org/p/A8B5_mP13_6_5a3b_2a3b-001
or
PDF Version
Prototype | Mo$_{8}$P$_{5}$ |
AFLOW prototype label | A8B5_mP13_6_5a3b_2a3b-001 |
ICSD | 15058 |
Pearson symbol | mP13 |
Space group number | 6 |
Space group symbol | $Pm$ |
AFLOW prototype command |
aflow --proto=A8B5_mP13_6_5a3b_2a3b-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak x_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak z_{11}, \allowbreak x_{12}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak z_{13}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $x_{1} \, \mathbf{a}_{1}+z_{1} \, \mathbf{a}_{3}$ | = | $\left(a x_{1} + c z_{1} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{1} \sin{\beta} \,\mathbf{\hat{z}}$ | (1a) | Mo I |
$\mathbf{B_{2}}$ | = | $x_{2} \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{3}$ | = | $\left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ | (1a) | Mo II |
$\mathbf{B_{3}}$ | = | $x_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{3}$ | = | $\left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ | (1a) | Mo III |
$\mathbf{B_{4}}$ | = | $x_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{3}$ | = | $\left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ | (1a) | Mo IV |
$\mathbf{B_{5}}$ | = | $x_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{3}$ | = | $\left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ | (1a) | Mo V |
$\mathbf{B_{6}}$ | = | $x_{6} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{3}$ | = | $\left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ | (1a) | P I |
$\mathbf{B_{7}}$ | = | $x_{7} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{3}$ | = | $\left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ | (1a) | P II |
$\mathbf{B_{8}}$ | = | $x_{8} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $\left(a x_{8} + c z_{8} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{8} \sin{\beta} \,\mathbf{\hat{z}}$ | (1b) | Mo VI |
$\mathbf{B_{9}}$ | = | $x_{9} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ | = | $\left(a x_{9} + c z_{9} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{9} \sin{\beta} \,\mathbf{\hat{z}}$ | (1b) | Mo VII |
$\mathbf{B_{10}}$ | = | $x_{10} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ | = | $\left(a x_{10} + c z_{10} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{10} \sin{\beta} \,\mathbf{\hat{z}}$ | (1b) | Mo VIII |
$\mathbf{B_{11}}$ | = | $x_{11} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ | = | $\left(a x_{11} + c z_{11} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{11} \sin{\beta} \,\mathbf{\hat{z}}$ | (1b) | P III |
$\mathbf{B_{12}}$ | = | $x_{12} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ | = | $\left(a x_{12} + c z_{12} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{12} \sin{\beta} \,\mathbf{\hat{z}}$ | (1b) | P IV |
$\mathbf{B_{13}}$ | = | $x_{13} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ | = | $\left(a x_{13} + c z_{13} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{13} \sin{\beta} \,\mathbf{\hat{z}}$ | (1b) | P V |