Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A8B5_mP13_6_5a3b_2a3b-001

This structure originally had the label A8B5_mP13_6_a7b_3a2b. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/LEL6
or https://aflow.org/p/A8B5_mP13_6_5a3b_2a3b-001
or PDF Version

Mo$_{8}$P$_{5}$ Structure: A8B5_mP13_6_5a3b_2a3b-001

Picture of Structure; Click for Big Picture
Prototype Mo$_{8}$P$_{5}$
AFLOW prototype label A8B5_mP13_6_5a3b_2a3b-001
ICSD 15058
Pearson symbol mP13
Space group number 6
Space group symbol $Pm$
AFLOW prototype command aflow --proto=A8B5_mP13_6_5a3b_2a3b-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak x_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak z_{11}, \allowbreak x_{12}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak z_{13}$

  • Our original reconstruction of this prototype (Hicks, 2019) placed two of the Mo (1b) sites on (1a) sites. We have corrected that here.
  • This high-temperature phase of the Mo-P system is observed in the range $1580-1680°$C (Johnsson, 1972).

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \cos{\beta} \,\mathbf{\hat{x}}+c \sin{\beta} \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+z_{1} \, \mathbf{a}_{3}$ = $\left(a x_{1} + c z_{1} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{1} \sin{\beta} \,\mathbf{\hat{z}}$ (1a) Mo I
$\mathbf{B_{2}}$ = $x_{2} \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{3}$ = $\left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ (1a) Mo II
$\mathbf{B_{3}}$ = $x_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{3}$ = $\left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (1a) Mo III
$\mathbf{B_{4}}$ = $x_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{3}$ = $\left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ (1a) Mo IV
$\mathbf{B_{5}}$ = $x_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{3}$ = $\left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ (1a) Mo V
$\mathbf{B_{6}}$ = $x_{6} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{3}$ = $\left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ (1a) P I
$\mathbf{B_{7}}$ = $x_{7} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{3}$ = $\left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ (1a) P II
$\mathbf{B_{8}}$ = $x_{8} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $\left(a x_{8} + c z_{8} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{8} \sin{\beta} \,\mathbf{\hat{z}}$ (1b) Mo VI
$\mathbf{B_{9}}$ = $x_{9} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $\left(a x_{9} + c z_{9} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{9} \sin{\beta} \,\mathbf{\hat{z}}$ (1b) Mo VII
$\mathbf{B_{10}}$ = $x_{10} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $\left(a x_{10} + c z_{10} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{10} \sin{\beta} \,\mathbf{\hat{z}}$ (1b) Mo VIII
$\mathbf{B_{11}}$ = $x_{11} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $\left(a x_{11} + c z_{11} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{11} \sin{\beta} \,\mathbf{\hat{z}}$ (1b) P III
$\mathbf{B_{12}}$ = $x_{12} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $\left(a x_{12} + c z_{12} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{12} \sin{\beta} \,\mathbf{\hat{z}}$ (1b) P IV
$\mathbf{B_{13}}$ = $x_{13} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $\left(a x_{13} + c z_{13} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{13} \sin{\beta} \,\mathbf{\hat{z}}$ (1b) P V

References

  • T. Johnsson, The Crystal Structure of Mo$_{8}$P$_{5}$ from Twin-crystal Data, Acta Chem. Scand. 26, 365–382 (1972), doi:10.3891/acta.chem.scand.26-0365.
  • D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comput. Mater. Sci. 161, S1–S1011 (2019), doi:10.1016/j.commatsci.2018.10.043.

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds (2013). ASM International.

Prototype Generator

aflow --proto=A8B5_mP13_6_5a3b_2a3b --params=$a,b/a,c/a,\beta,x_{1},z_{1},x_{2},z_{2},x_{3},z_{3},x_{4},z_{4},x_{5},z_{5},x_{6},z_{6},x_{7},z_{7},x_{8},z_{8},x_{9},z_{9},x_{10},z_{10},x_{11},z_{11},x_{12},z_{12},x_{13},z_{13}$

Species:

Running:

Output: