Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A8B7C6_hP126_176_2h3i_acd6h_3i-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/01SA
or https://aflow.org/p/A8B7C6_hP126_176_2h3i_acd6h_3i-001
or PDF Version

Nb$_{7}$Rh$_{6}$B$_{8}$ Structure: A8B7C6_hP126_176_2h3i_acd6h_3i-001

Picture of Structure; Click for Big Picture
Prototype B$_{8}$Nb$_{7}$Rh$_{6}$
AFLOW prototype label A8B7C6_hP126_176_2h3i_acd6h_3i-001
ICSD 263043
Pearson symbol hP126
Space group number 176
Space group symbol $P6_3/m$
AFLOW prototype command aflow --proto=A8B7C6_hP126_176_2h3i_acd6h_3i-001
--params=$a, \allowbreak c/a, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak x_{12}, \allowbreak y_{12}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak y_{13}, \allowbreak z_{13}, \allowbreak x_{14}, \allowbreak y_{14}, \allowbreak z_{14}, \allowbreak x_{15}, \allowbreak y_{15}, \allowbreak z_{15}, \allowbreak x_{16}, \allowbreak y_{16}, \allowbreak z_{16}, \allowbreak x_{17}, \allowbreak y_{17}, \allowbreak z_{17}$

Other compounds with this structure

Ta$_{7}$Rh$_{6}$B$_{8}$


  • (Zheng, 2012) place the Nb-I (their Nb3) atom on the (2b) Wyckoff position, but give the coordinates for the (2a) position. We assume that the coordinates are correct. This assessment agrees with the ICSD entry.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}c \,\mathbf{\hat{z}}$ (2a) Nb I
$\mathbf{B_{2}}$ = $\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}c \,\mathbf{\hat{z}}$ (2a) Nb I
$\mathbf{B_{3}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (2c) Nb II
$\mathbf{B_{4}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (2c) Nb II
$\mathbf{B_{5}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (2d) Nb III
$\mathbf{B_{6}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (2d) Nb III
$\mathbf{B_{7}}$ = $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} + y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) B I
$\mathbf{B_{8}}$ = $- y_{4} \, \mathbf{a}_{1}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} - 2 y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) B I
$\mathbf{B_{9}}$ = $- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{4} - y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{4} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) B I
$\mathbf{B_{10}}$ = $- x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{4} + y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) B I
$\mathbf{B_{11}}$ = $y_{4} \, \mathbf{a}_{1}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{4} + 2 y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) B I
$\mathbf{B_{12}}$ = $\left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{4} - y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{4} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) B I
$\mathbf{B_{13}}$ = $x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{5} + y_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{5} - y_{5}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) B II
$\mathbf{B_{14}}$ = $- y_{5} \, \mathbf{a}_{1}+\left(x_{5} - y_{5}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{5} - 2 y_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) B II
$\mathbf{B_{15}}$ = $- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{5} - y_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{5} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) B II
$\mathbf{B_{16}}$ = $- x_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{5} + y_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{5} - y_{5}\right) \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) B II
$\mathbf{B_{17}}$ = $y_{5} \, \mathbf{a}_{1}- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{5} + 2 y_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) B II
$\mathbf{B_{18}}$ = $\left(x_{5} - y_{5}\right) \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{5} - y_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{5} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) B II
$\mathbf{B_{19}}$ = $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{6} + y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{6} - y_{6}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) Nb IV
$\mathbf{B_{20}}$ = $- y_{6} \, \mathbf{a}_{1}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{6} - 2 y_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) Nb IV
$\mathbf{B_{21}}$ = $- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{6} - y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{6} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) Nb IV
$\mathbf{B_{22}}$ = $- x_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{6} + y_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{6} - y_{6}\right) \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) Nb IV
$\mathbf{B_{23}}$ = $y_{6} \, \mathbf{a}_{1}- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{6} + 2 y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) Nb IV
$\mathbf{B_{24}}$ = $\left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{6} - y_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{6} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) Nb IV
$\mathbf{B_{25}}$ = $x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{7} + y_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{7} - y_{7}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) Nb V
$\mathbf{B_{26}}$ = $- y_{7} \, \mathbf{a}_{1}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{7} - 2 y_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) Nb V
$\mathbf{B_{27}}$ = $- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{7} - y_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{7} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) Nb V
$\mathbf{B_{28}}$ = $- x_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{7} + y_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{7} - y_{7}\right) \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) Nb V
$\mathbf{B_{29}}$ = $y_{7} \, \mathbf{a}_{1}- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{7} + 2 y_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) Nb V
$\mathbf{B_{30}}$ = $\left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{7} - y_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{7} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) Nb V
$\mathbf{B_{31}}$ = $x_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{8} + y_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{8} - y_{8}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) Nb VI
$\mathbf{B_{32}}$ = $- y_{8} \, \mathbf{a}_{1}+\left(x_{8} - y_{8}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{8} - 2 y_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) Nb VI
$\mathbf{B_{33}}$ = $- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{8} - y_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{8} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) Nb VI
$\mathbf{B_{34}}$ = $- x_{8} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{8} + y_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{8} - y_{8}\right) \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) Nb VI
$\mathbf{B_{35}}$ = $y_{8} \, \mathbf{a}_{1}- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{8} + 2 y_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) Nb VI
$\mathbf{B_{36}}$ = $\left(x_{8} - y_{8}\right) \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{8} - y_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{8} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) Nb VI
$\mathbf{B_{37}}$ = $x_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{9} + y_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{9} - y_{9}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) Nb VII
$\mathbf{B_{38}}$ = $- y_{9} \, \mathbf{a}_{1}+\left(x_{9} - y_{9}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{9} - 2 y_{9}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) Nb VII
$\mathbf{B_{39}}$ = $- \left(x_{9} - y_{9}\right) \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{9} - y_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{9} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) Nb VII
$\mathbf{B_{40}}$ = $- x_{9} \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{9} + y_{9}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{9} - y_{9}\right) \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) Nb VII
$\mathbf{B_{41}}$ = $y_{9} \, \mathbf{a}_{1}- \left(x_{9} - y_{9}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{9} + 2 y_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) Nb VII
$\mathbf{B_{42}}$ = $\left(x_{9} - y_{9}\right) \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{9} - y_{9}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{9} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) Nb VII
$\mathbf{B_{43}}$ = $x_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{10} + y_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{10} - y_{10}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) Nb VIII
$\mathbf{B_{44}}$ = $- y_{10} \, \mathbf{a}_{1}+\left(x_{10} - y_{10}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{10} - 2 y_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) Nb VIII
$\mathbf{B_{45}}$ = $- \left(x_{10} - y_{10}\right) \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{10} - y_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{10} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) Nb VIII
$\mathbf{B_{46}}$ = $- x_{10} \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{10} + y_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{10} - y_{10}\right) \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) Nb VIII
$\mathbf{B_{47}}$ = $y_{10} \, \mathbf{a}_{1}- \left(x_{10} - y_{10}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{10} + 2 y_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) Nb VIII
$\mathbf{B_{48}}$ = $\left(x_{10} - y_{10}\right) \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{10} - y_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{10} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) Nb VIII
$\mathbf{B_{49}}$ = $x_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{11} + y_{11}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{11} - y_{11}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) Nb IX
$\mathbf{B_{50}}$ = $- y_{11} \, \mathbf{a}_{1}+\left(x_{11} - y_{11}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{11} - 2 y_{11}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{11} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) Nb IX
$\mathbf{B_{51}}$ = $- \left(x_{11} - y_{11}\right) \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{11} - y_{11}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{11} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) Nb IX
$\mathbf{B_{52}}$ = $- x_{11} \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{11} + y_{11}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{11} - y_{11}\right) \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) Nb IX
$\mathbf{B_{53}}$ = $y_{11} \, \mathbf{a}_{1}- \left(x_{11} - y_{11}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{11} + 2 y_{11}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{11} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) Nb IX
$\mathbf{B_{54}}$ = $\left(x_{11} - y_{11}\right) \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{11} - y_{11}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{11} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) Nb IX
$\mathbf{B_{55}}$ = $x_{12} \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{12} + y_{12}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{12} - y_{12}\right) \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (12i) B III
$\mathbf{B_{56}}$ = $- y_{12} \, \mathbf{a}_{1}+\left(x_{12} - y_{12}\right) \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{12} - 2 y_{12}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (12i) B III
$\mathbf{B_{57}}$ = $- \left(x_{12} - y_{12}\right) \, \mathbf{a}_{1}- x_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{12} - y_{12}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (12i) B III
$\mathbf{B_{58}}$ = $- x_{12} \, \mathbf{a}_{1}- y_{12} \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{12} + y_{12}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{12} - y_{12}\right) \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12i) B III
$\mathbf{B_{59}}$ = $y_{12} \, \mathbf{a}_{1}- \left(x_{12} - y_{12}\right) \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{12} + 2 y_{12}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{12} \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12i) B III
$\mathbf{B_{60}}$ = $\left(x_{12} - y_{12}\right) \, \mathbf{a}_{1}+x_{12} \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{12} - y_{12}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{12} \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12i) B III
$\mathbf{B_{61}}$ = $- x_{12} \, \mathbf{a}_{1}- y_{12} \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{12} + y_{12}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{12} - y_{12}\right) \,\mathbf{\hat{y}}- c z_{12} \,\mathbf{\hat{z}}$ (12i) B III
$\mathbf{B_{62}}$ = $y_{12} \, \mathbf{a}_{1}- \left(x_{12} - y_{12}\right) \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{12} + 2 y_{12}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{12} \,\mathbf{\hat{y}}- c z_{12} \,\mathbf{\hat{z}}$ (12i) B III
$\mathbf{B_{63}}$ = $\left(x_{12} - y_{12}\right) \, \mathbf{a}_{1}+x_{12} \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{12} - y_{12}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{12} \,\mathbf{\hat{y}}- c z_{12} \,\mathbf{\hat{z}}$ (12i) B III
$\mathbf{B_{64}}$ = $x_{12} \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}- \left(z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{12} + y_{12}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{12} - y_{12}\right) \,\mathbf{\hat{y}}- c \left(z_{12} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12i) B III
$\mathbf{B_{65}}$ = $- y_{12} \, \mathbf{a}_{1}+\left(x_{12} - y_{12}\right) \, \mathbf{a}_{2}- \left(z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{12} - 2 y_{12}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{12} \,\mathbf{\hat{y}}- c \left(z_{12} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12i) B III
$\mathbf{B_{66}}$ = $- \left(x_{12} - y_{12}\right) \, \mathbf{a}_{1}- x_{12} \, \mathbf{a}_{2}- \left(z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{12} - y_{12}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{12} \,\mathbf{\hat{y}}- c \left(z_{12} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12i) B III
$\mathbf{B_{67}}$ = $x_{13} \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{13} + y_{13}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{13} - y_{13}\right) \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (12i) B IV
$\mathbf{B_{68}}$ = $- y_{13} \, \mathbf{a}_{1}+\left(x_{13} - y_{13}\right) \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{13} - 2 y_{13}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (12i) B IV
$\mathbf{B_{69}}$ = $- \left(x_{13} - y_{13}\right) \, \mathbf{a}_{1}- x_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{13} - y_{13}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (12i) B IV
$\mathbf{B_{70}}$ = $- x_{13} \, \mathbf{a}_{1}- y_{13} \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{13} + y_{13}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{13} - y_{13}\right) \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12i) B IV
$\mathbf{B_{71}}$ = $y_{13} \, \mathbf{a}_{1}- \left(x_{13} - y_{13}\right) \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{13} + 2 y_{13}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{13} \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12i) B IV
$\mathbf{B_{72}}$ = $\left(x_{13} - y_{13}\right) \, \mathbf{a}_{1}+x_{13} \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{13} - y_{13}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{13} \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12i) B IV
$\mathbf{B_{73}}$ = $- x_{13} \, \mathbf{a}_{1}- y_{13} \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{13} + y_{13}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{13} - y_{13}\right) \,\mathbf{\hat{y}}- c z_{13} \,\mathbf{\hat{z}}$ (12i) B IV
$\mathbf{B_{74}}$ = $y_{13} \, \mathbf{a}_{1}- \left(x_{13} - y_{13}\right) \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{13} + 2 y_{13}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{13} \,\mathbf{\hat{y}}- c z_{13} \,\mathbf{\hat{z}}$ (12i) B IV
$\mathbf{B_{75}}$ = $\left(x_{13} - y_{13}\right) \, \mathbf{a}_{1}+x_{13} \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{13} - y_{13}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{13} \,\mathbf{\hat{y}}- c z_{13} \,\mathbf{\hat{z}}$ (12i) B IV
$\mathbf{B_{76}}$ = $x_{13} \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}- \left(z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{13} + y_{13}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{13} - y_{13}\right) \,\mathbf{\hat{y}}- c \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12i) B IV
$\mathbf{B_{77}}$ = $- y_{13} \, \mathbf{a}_{1}+\left(x_{13} - y_{13}\right) \, \mathbf{a}_{2}- \left(z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{13} - 2 y_{13}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{13} \,\mathbf{\hat{y}}- c \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12i) B IV
$\mathbf{B_{78}}$ = $- \left(x_{13} - y_{13}\right) \, \mathbf{a}_{1}- x_{13} \, \mathbf{a}_{2}- \left(z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{13} - y_{13}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{13} \,\mathbf{\hat{y}}- c \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12i) B IV
$\mathbf{B_{79}}$ = $x_{14} \, \mathbf{a}_{1}+y_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{14} + y_{14}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{14} - y_{14}\right) \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (12i) B V
$\mathbf{B_{80}}$ = $- y_{14} \, \mathbf{a}_{1}+\left(x_{14} - y_{14}\right) \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{14} - 2 y_{14}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (12i) B V
$\mathbf{B_{81}}$ = $- \left(x_{14} - y_{14}\right) \, \mathbf{a}_{1}- x_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{14} - y_{14}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (12i) B V
$\mathbf{B_{82}}$ = $- x_{14} \, \mathbf{a}_{1}- y_{14} \, \mathbf{a}_{2}+\left(z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{14} + y_{14}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{14} - y_{14}\right) \,\mathbf{\hat{y}}+c \left(z_{14} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12i) B V
$\mathbf{B_{83}}$ = $y_{14} \, \mathbf{a}_{1}- \left(x_{14} - y_{14}\right) \, \mathbf{a}_{2}+\left(z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{14} + 2 y_{14}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{14} \,\mathbf{\hat{y}}+c \left(z_{14} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12i) B V
$\mathbf{B_{84}}$ = $\left(x_{14} - y_{14}\right) \, \mathbf{a}_{1}+x_{14} \, \mathbf{a}_{2}+\left(z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{14} - y_{14}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{14} \,\mathbf{\hat{y}}+c \left(z_{14} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12i) B V
$\mathbf{B_{85}}$ = $- x_{14} \, \mathbf{a}_{1}- y_{14} \, \mathbf{a}_{2}- z_{14} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{14} + y_{14}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{14} - y_{14}\right) \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ (12i) B V
$\mathbf{B_{86}}$ = $y_{14} \, \mathbf{a}_{1}- \left(x_{14} - y_{14}\right) \, \mathbf{a}_{2}- z_{14} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{14} + 2 y_{14}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{14} \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ (12i) B V
$\mathbf{B_{87}}$ = $\left(x_{14} - y_{14}\right) \, \mathbf{a}_{1}+x_{14} \, \mathbf{a}_{2}- z_{14} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{14} - y_{14}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{14} \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ (12i) B V
$\mathbf{B_{88}}$ = $x_{14} \, \mathbf{a}_{1}+y_{14} \, \mathbf{a}_{2}- \left(z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{14} + y_{14}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{14} - y_{14}\right) \,\mathbf{\hat{y}}- c \left(z_{14} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12i) B V
$\mathbf{B_{89}}$ = $- y_{14} \, \mathbf{a}_{1}+\left(x_{14} - y_{14}\right) \, \mathbf{a}_{2}- \left(z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{14} - 2 y_{14}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{14} \,\mathbf{\hat{y}}- c \left(z_{14} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12i) B V
$\mathbf{B_{90}}$ = $- \left(x_{14} - y_{14}\right) \, \mathbf{a}_{1}- x_{14} \, \mathbf{a}_{2}- \left(z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{14} - y_{14}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{14} \,\mathbf{\hat{y}}- c \left(z_{14} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12i) B V
$\mathbf{B_{91}}$ = $x_{15} \, \mathbf{a}_{1}+y_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{15} + y_{15}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{15} - y_{15}\right) \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (12i) Rh I
$\mathbf{B_{92}}$ = $- y_{15} \, \mathbf{a}_{1}+\left(x_{15} - y_{15}\right) \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{15} - 2 y_{15}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (12i) Rh I
$\mathbf{B_{93}}$ = $- \left(x_{15} - y_{15}\right) \, \mathbf{a}_{1}- x_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{15} - y_{15}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (12i) Rh I
$\mathbf{B_{94}}$ = $- x_{15} \, \mathbf{a}_{1}- y_{15} \, \mathbf{a}_{2}+\left(z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{15} + y_{15}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{15} - y_{15}\right) \,\mathbf{\hat{y}}+c \left(z_{15} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12i) Rh I
$\mathbf{B_{95}}$ = $y_{15} \, \mathbf{a}_{1}- \left(x_{15} - y_{15}\right) \, \mathbf{a}_{2}+\left(z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{15} + 2 y_{15}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{15} \,\mathbf{\hat{y}}+c \left(z_{15} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12i) Rh I
$\mathbf{B_{96}}$ = $\left(x_{15} - y_{15}\right) \, \mathbf{a}_{1}+x_{15} \, \mathbf{a}_{2}+\left(z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{15} - y_{15}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{15} \,\mathbf{\hat{y}}+c \left(z_{15} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12i) Rh I
$\mathbf{B_{97}}$ = $- x_{15} \, \mathbf{a}_{1}- y_{15} \, \mathbf{a}_{2}- z_{15} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{15} + y_{15}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{15} - y_{15}\right) \,\mathbf{\hat{y}}- c z_{15} \,\mathbf{\hat{z}}$ (12i) Rh I
$\mathbf{B_{98}}$ = $y_{15} \, \mathbf{a}_{1}- \left(x_{15} - y_{15}\right) \, \mathbf{a}_{2}- z_{15} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{15} + 2 y_{15}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{15} \,\mathbf{\hat{y}}- c z_{15} \,\mathbf{\hat{z}}$ (12i) Rh I
$\mathbf{B_{99}}$ = $\left(x_{15} - y_{15}\right) \, \mathbf{a}_{1}+x_{15} \, \mathbf{a}_{2}- z_{15} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{15} - y_{15}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{15} \,\mathbf{\hat{y}}- c z_{15} \,\mathbf{\hat{z}}$ (12i) Rh I
$\mathbf{B_{100}}$ = $x_{15} \, \mathbf{a}_{1}+y_{15} \, \mathbf{a}_{2}- \left(z_{15} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{15} + y_{15}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{15} - y_{15}\right) \,\mathbf{\hat{y}}- c \left(z_{15} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12i) Rh I
$\mathbf{B_{101}}$ = $- y_{15} \, \mathbf{a}_{1}+\left(x_{15} - y_{15}\right) \, \mathbf{a}_{2}- \left(z_{15} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{15} - 2 y_{15}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{15} \,\mathbf{\hat{y}}- c \left(z_{15} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12i) Rh I
$\mathbf{B_{102}}$ = $- \left(x_{15} - y_{15}\right) \, \mathbf{a}_{1}- x_{15} \, \mathbf{a}_{2}- \left(z_{15} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{15} - y_{15}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{15} \,\mathbf{\hat{y}}- c \left(z_{15} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12i) Rh I
$\mathbf{B_{103}}$ = $x_{16} \, \mathbf{a}_{1}+y_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{16} + y_{16}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{16} - y_{16}\right) \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (12i) Rh II
$\mathbf{B_{104}}$ = $- y_{16} \, \mathbf{a}_{1}+\left(x_{16} - y_{16}\right) \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{16} - 2 y_{16}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{16} \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (12i) Rh II
$\mathbf{B_{105}}$ = $- \left(x_{16} - y_{16}\right) \, \mathbf{a}_{1}- x_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{16} - y_{16}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{16} \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (12i) Rh II
$\mathbf{B_{106}}$ = $- x_{16} \, \mathbf{a}_{1}- y_{16} \, \mathbf{a}_{2}+\left(z_{16} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{16} + y_{16}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{16} - y_{16}\right) \,\mathbf{\hat{y}}+c \left(z_{16} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12i) Rh II
$\mathbf{B_{107}}$ = $y_{16} \, \mathbf{a}_{1}- \left(x_{16} - y_{16}\right) \, \mathbf{a}_{2}+\left(z_{16} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{16} + 2 y_{16}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{16} \,\mathbf{\hat{y}}+c \left(z_{16} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12i) Rh II
$\mathbf{B_{108}}$ = $\left(x_{16} - y_{16}\right) \, \mathbf{a}_{1}+x_{16} \, \mathbf{a}_{2}+\left(z_{16} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{16} - y_{16}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{16} \,\mathbf{\hat{y}}+c \left(z_{16} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12i) Rh II
$\mathbf{B_{109}}$ = $- x_{16} \, \mathbf{a}_{1}- y_{16} \, \mathbf{a}_{2}- z_{16} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{16} + y_{16}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{16} - y_{16}\right) \,\mathbf{\hat{y}}- c z_{16} \,\mathbf{\hat{z}}$ (12i) Rh II
$\mathbf{B_{110}}$ = $y_{16} \, \mathbf{a}_{1}- \left(x_{16} - y_{16}\right) \, \mathbf{a}_{2}- z_{16} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{16} + 2 y_{16}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{16} \,\mathbf{\hat{y}}- c z_{16} \,\mathbf{\hat{z}}$ (12i) Rh II
$\mathbf{B_{111}}$ = $\left(x_{16} - y_{16}\right) \, \mathbf{a}_{1}+x_{16} \, \mathbf{a}_{2}- z_{16} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{16} - y_{16}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{16} \,\mathbf{\hat{y}}- c z_{16} \,\mathbf{\hat{z}}$ (12i) Rh II
$\mathbf{B_{112}}$ = $x_{16} \, \mathbf{a}_{1}+y_{16} \, \mathbf{a}_{2}- \left(z_{16} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{16} + y_{16}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{16} - y_{16}\right) \,\mathbf{\hat{y}}- c \left(z_{16} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12i) Rh II
$\mathbf{B_{113}}$ = $- y_{16} \, \mathbf{a}_{1}+\left(x_{16} - y_{16}\right) \, \mathbf{a}_{2}- \left(z_{16} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{16} - 2 y_{16}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{16} \,\mathbf{\hat{y}}- c \left(z_{16} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12i) Rh II
$\mathbf{B_{114}}$ = $- \left(x_{16} - y_{16}\right) \, \mathbf{a}_{1}- x_{16} \, \mathbf{a}_{2}- \left(z_{16} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{16} - y_{16}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{16} \,\mathbf{\hat{y}}- c \left(z_{16} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12i) Rh II
$\mathbf{B_{115}}$ = $x_{17} \, \mathbf{a}_{1}+y_{17} \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{17} + y_{17}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{17} - y_{17}\right) \,\mathbf{\hat{y}}+c z_{17} \,\mathbf{\hat{z}}$ (12i) Rh III
$\mathbf{B_{116}}$ = $- y_{17} \, \mathbf{a}_{1}+\left(x_{17} - y_{17}\right) \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{17} - 2 y_{17}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{17} \,\mathbf{\hat{y}}+c z_{17} \,\mathbf{\hat{z}}$ (12i) Rh III
$\mathbf{B_{117}}$ = $- \left(x_{17} - y_{17}\right) \, \mathbf{a}_{1}- x_{17} \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{17} - y_{17}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{17} \,\mathbf{\hat{y}}+c z_{17} \,\mathbf{\hat{z}}$ (12i) Rh III
$\mathbf{B_{118}}$ = $- x_{17} \, \mathbf{a}_{1}- y_{17} \, \mathbf{a}_{2}+\left(z_{17} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{17} + y_{17}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{17} - y_{17}\right) \,\mathbf{\hat{y}}+c \left(z_{17} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12i) Rh III
$\mathbf{B_{119}}$ = $y_{17} \, \mathbf{a}_{1}- \left(x_{17} - y_{17}\right) \, \mathbf{a}_{2}+\left(z_{17} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{17} + 2 y_{17}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{17} \,\mathbf{\hat{y}}+c \left(z_{17} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12i) Rh III
$\mathbf{B_{120}}$ = $\left(x_{17} - y_{17}\right) \, \mathbf{a}_{1}+x_{17} \, \mathbf{a}_{2}+\left(z_{17} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{17} - y_{17}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{17} \,\mathbf{\hat{y}}+c \left(z_{17} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12i) Rh III
$\mathbf{B_{121}}$ = $- x_{17} \, \mathbf{a}_{1}- y_{17} \, \mathbf{a}_{2}- z_{17} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{17} + y_{17}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{17} - y_{17}\right) \,\mathbf{\hat{y}}- c z_{17} \,\mathbf{\hat{z}}$ (12i) Rh III
$\mathbf{B_{122}}$ = $y_{17} \, \mathbf{a}_{1}- \left(x_{17} - y_{17}\right) \, \mathbf{a}_{2}- z_{17} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{17} + 2 y_{17}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{17} \,\mathbf{\hat{y}}- c z_{17} \,\mathbf{\hat{z}}$ (12i) Rh III
$\mathbf{B_{123}}$ = $\left(x_{17} - y_{17}\right) \, \mathbf{a}_{1}+x_{17} \, \mathbf{a}_{2}- z_{17} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{17} - y_{17}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{17} \,\mathbf{\hat{y}}- c z_{17} \,\mathbf{\hat{z}}$ (12i) Rh III
$\mathbf{B_{124}}$ = $x_{17} \, \mathbf{a}_{1}+y_{17} \, \mathbf{a}_{2}- \left(z_{17} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{17} + y_{17}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{17} - y_{17}\right) \,\mathbf{\hat{y}}- c \left(z_{17} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12i) Rh III
$\mathbf{B_{125}}$ = $- y_{17} \, \mathbf{a}_{1}+\left(x_{17} - y_{17}\right) \, \mathbf{a}_{2}- \left(z_{17} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{17} - 2 y_{17}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{17} \,\mathbf{\hat{y}}- c \left(z_{17} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12i) Rh III
$\mathbf{B_{126}}$ = $- \left(x_{17} - y_{17}\right) \, \mathbf{a}_{1}- x_{17} \, \mathbf{a}_{2}- \left(z_{17} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{17} - y_{17}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{17} \,\mathbf{\hat{y}}- c \left(z_{17} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12i) Rh III

References

  • Q. Zheng, M. Kohout, R. Gumeniuk, N. Abramchuk, H. Borrmann, Y. Prots, U. Burkhardt, W. Schnelle, L. Akselrud, H. Gu, A. Leithe-Jasper, and Y. Grin, TM$_{7}$TM'$_{6}$B$_{8}$ (TM = Ta, Nb; TM' = Ru, Rh, Ir): New Compounds with [B$_{6}$] Ring Polyanions, Inorg. Chem. 51, 7492–7483 (2012), doi:10.1021/ic201978n.

Prototype Generator

aflow --proto=A8B7C6_hP126_176_2h3i_acd6h_3i --params=$a,c/a,x_{4},y_{4},x_{5},y_{5},x_{6},y_{6},x_{7},y_{7},x_{8},y_{8},x_{9},y_{9},x_{10},y_{10},x_{11},y_{11},x_{12},y_{12},z_{12},x_{13},y_{13},z_{13},x_{14},y_{14},z_{14},x_{15},y_{15},z_{15},x_{16},y_{16},z_{16},x_{17},y_{17},z_{17}$

Species:

Running:

Output: