AFLOW Prototype: A8B_tI18_139_hi_a-001
This structure originally had the label A8B_tI18_139_hi_a. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/XTZU
or
https://aflow.org/p/A8B_tI18_139_hi_a-001
or
PDF Version
Prototype | Pt$_{8}$Ti |
AFLOW prototype label | A8B_tI18_139_hi_a-001 |
ICSD | 105818 |
Pearson symbol | tI18 |
Space group number | 139 |
Space group symbol | $I4/mmm$ |
AFLOW prototype command |
aflow --proto=A8B_tI18_139_hi_a-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}$ |
Ni$_{8}$Mo, Ni$_{8}$Nb, Ni$_{8}$Ta, Ni$_{8}$V, Pd$_{8}$Mo, Pd$_{8}$V, Pd$_{8}$W, Pt$_{8}$Ce, Pt$_{8}$Ti, Pt$_{8}$V, Pt$_{8}$Zr
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2a) | Ti I |
$\mathbf{B_{2}}$ | = | $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+2 x_{2} \, \mathbf{a}_{3}$ | = | $a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}$ | (8h) | Pt I |
$\mathbf{B_{3}}$ | = | $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- 2 x_{2} \, \mathbf{a}_{3}$ | = | $- a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}$ | (8h) | Pt I |
$\mathbf{B_{4}}$ | = | $x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}$ | = | $- a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}$ | (8h) | Pt I |
$\mathbf{B_{5}}$ | = | $- x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}$ | = | $a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}$ | (8h) | Pt I |
$\mathbf{B_{6}}$ | = | $x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}$ | (8i) | Pt II |
$\mathbf{B_{7}}$ | = | $- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}$ | (8i) | Pt II |
$\mathbf{B_{8}}$ | = | $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{y}}$ | (8i) | Pt II |
$\mathbf{B_{9}}$ | = | $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{y}}$ | (8i) | Pt II |