AFLOW Prototype: A9B9C16_tP34_111_ajn_bcdek_2no-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/2KD6
or
https://aflow.org/p/A9B9C16_tP34_111_ajn_bcdek_2no-001
or
PDF Version
Prototype | Cu$_{9}$Fe$_{9}$S$_{16}$ |
AFLOW prototype label | A9B9C16_tP34_111_ajn_bcdek_2no-001 |
Mineral name | mooihoekite |
ICSD | 2649 |
Pearson symbol | tP34 |
Space group number | 111 |
Space group symbol | $P\overline{4}2m$ |
AFLOW prototype command |
aflow --proto=A9B9C16_tP34_111_ajn_bcdek_2no-001
--params=$a, \allowbreak c/a, \allowbreak x_{6}, \allowbreak x_{7}, \allowbreak x_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (1a) | Cu I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (1b) | Fe I |
$\mathbf{B_{3}}$ | = | $\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}c \,\mathbf{\hat{z}}$ | (1c) | Fe II |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ | (1d) | Fe III |
$\mathbf{B_{5}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}$ | (2e) | Fe IV |
$\mathbf{B_{6}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}$ | (2e) | Fe IV |
$\mathbf{B_{7}}$ | = | $x_{6} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{6} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4j) | Cu II |
$\mathbf{B_{8}}$ | = | $- x_{6} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{6} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4j) | Cu II |
$\mathbf{B_{9}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4j) | Cu II |
$\mathbf{B_{10}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4j) | Cu II |
$\mathbf{B_{11}}$ | = | $x_{7} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{7} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4k) | Fe V |
$\mathbf{B_{12}}$ | = | $- x_{7} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{7} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4k) | Fe V |
$\mathbf{B_{13}}$ | = | $- x_{7} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{7} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4k) | Fe V |
$\mathbf{B_{14}}$ | = | $x_{7} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{7} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4k) | Fe V |
$\mathbf{B_{15}}$ | = | $x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $a x_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (4n) | Cu III |
$\mathbf{B_{16}}$ | = | $- x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $- a x_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (4n) | Cu III |
$\mathbf{B_{17}}$ | = | $x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ | = | $a x_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ | (4n) | Cu III |
$\mathbf{B_{18}}$ | = | $- x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ | = | $- a x_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ | (4n) | Cu III |
$\mathbf{B_{19}}$ | = | $x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ | = | $a x_{9} \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ | (4n) | S I |
$\mathbf{B_{20}}$ | = | $- x_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ | = | $- a x_{9} \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ | (4n) | S I |
$\mathbf{B_{21}}$ | = | $x_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ | = | $a x_{9} \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ | (4n) | S I |
$\mathbf{B_{22}}$ | = | $- x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ | = | $- a x_{9} \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ | (4n) | S I |
$\mathbf{B_{23}}$ | = | $x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ | = | $a x_{10} \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ | (4n) | S II |
$\mathbf{B_{24}}$ | = | $- x_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ | = | $- a x_{10} \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ | (4n) | S II |
$\mathbf{B_{25}}$ | = | $x_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ | = | $a x_{10} \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ | (4n) | S II |
$\mathbf{B_{26}}$ | = | $- x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ | = | $- a x_{10} \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ | (4n) | S II |
$\mathbf{B_{27}}$ | = | $x_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ | = | $a x_{11} \,\mathbf{\hat{x}}+a y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ | (8o) | S III |
$\mathbf{B_{28}}$ | = | $- x_{11} \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ | = | $- a x_{11} \,\mathbf{\hat{x}}- a y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ | (8o) | S III |
$\mathbf{B_{29}}$ | = | $y_{11} \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ | = | $a y_{11} \,\mathbf{\hat{x}}- a x_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ | (8o) | S III |
$\mathbf{B_{30}}$ | = | $- y_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ | = | $- a y_{11} \,\mathbf{\hat{x}}+a x_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ | (8o) | S III |
$\mathbf{B_{31}}$ | = | $- x_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ | = | $- a x_{11} \,\mathbf{\hat{x}}+a y_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ | (8o) | S III |
$\mathbf{B_{32}}$ | = | $x_{11} \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ | = | $a x_{11} \,\mathbf{\hat{x}}- a y_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ | (8o) | S III |
$\mathbf{B_{33}}$ | = | $- y_{11} \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ | = | $- a y_{11} \,\mathbf{\hat{x}}- a x_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ | (8o) | S III |
$\mathbf{B_{34}}$ | = | $y_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ | = | $a y_{11} \,\mathbf{\hat{x}}+a x_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ | (8o) | S III |