Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A9B9C16_tP34_111_ajn_bcdek_2no-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/2KD6
or https://aflow.org/p/A9B9C16_tP34_111_ajn_bcdek_2no-001
or PDF Version

Mooihoekite (Cu$_{9}$Fe$_{9}$S$_{16}$) Structure: A9B9C16_tP34_111_ajn_bcdek_2no-001

Picture of Structure; Click for Big Picture
Prototype Cu$_{9}$Fe$_{9}$S$_{16}$
AFLOW prototype label A9B9C16_tP34_111_ajn_bcdek_2no-001
Mineral name mooihoekite
ICSD 2649
Pearson symbol tP34
Space group number 111
Space group symbol $P\overline{4}2m$
AFLOW prototype command aflow --proto=A9B9C16_tP34_111_ajn_bcdek_2no-001
--params=$a, \allowbreak c/a, \allowbreak x_{6}, \allowbreak x_{7}, \allowbreak x_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}$

  • We have shifted the origin by $a/2 (\hat{x} + \hat{y})$ from that used by (Hall, 1973).

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Cu I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (1b) Fe I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (1c) Fe II
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ (1d) Fe III
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}$ (2e) Fe IV
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}$ (2e) Fe IV
$\mathbf{B_{7}}$ = $x_{6} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4j) Cu II
$\mathbf{B_{8}}$ = $- x_{6} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4j) Cu II
$\mathbf{B_{9}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4j) Cu II
$\mathbf{B_{10}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4j) Cu II
$\mathbf{B_{11}}$ = $x_{7} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4k) Fe V
$\mathbf{B_{12}}$ = $- x_{7} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4k) Fe V
$\mathbf{B_{13}}$ = $- x_{7} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4k) Fe V
$\mathbf{B_{14}}$ = $x_{7} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4k) Fe V
$\mathbf{B_{15}}$ = $x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (4n) Cu III
$\mathbf{B_{16}}$ = $- x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (4n) Cu III
$\mathbf{B_{17}}$ = $x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (4n) Cu III
$\mathbf{B_{18}}$ = $- x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (4n) Cu III
$\mathbf{B_{19}}$ = $x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (4n) S I
$\mathbf{B_{20}}$ = $- x_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (4n) S I
$\mathbf{B_{21}}$ = $x_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ (4n) S I
$\mathbf{B_{22}}$ = $- x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ (4n) S I
$\mathbf{B_{23}}$ = $x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (4n) S II
$\mathbf{B_{24}}$ = $- x_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (4n) S II
$\mathbf{B_{25}}$ = $x_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (4n) S II
$\mathbf{B_{26}}$ = $- x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (4n) S II
$\mathbf{B_{27}}$ = $x_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}+a y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (8o) S III
$\mathbf{B_{28}}$ = $- x_{11} \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}- a y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (8o) S III
$\mathbf{B_{29}}$ = $y_{11} \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $a y_{11} \,\mathbf{\hat{x}}- a x_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ (8o) S III
$\mathbf{B_{30}}$ = $- y_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $- a y_{11} \,\mathbf{\hat{x}}+a x_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ (8o) S III
$\mathbf{B_{31}}$ = $- x_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}+a y_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ (8o) S III
$\mathbf{B_{32}}$ = $x_{11} \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}- a y_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ (8o) S III
$\mathbf{B_{33}}$ = $- y_{11} \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $- a y_{11} \,\mathbf{\hat{x}}- a x_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (8o) S III
$\mathbf{B_{34}}$ = $y_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $a y_{11} \,\mathbf{\hat{x}}+a x_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (8o) S III

References

  • S. R. Hall and J. F. Rowland, The crystal structure of synthetic mooihoekite Cu$_{9}$Fe$_{9}$S$_{16}$, Acta Crystallogr. Sect. B 29, 2365–2372 (1973), doi:10.1107/S0567740873006710.

Found in

  • R. T. Downs and M. Hall-Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).

Prototype Generator

aflow --proto=A9B9C16_tP34_111_ajn_bcdek_2no --params=$a,c/a,x_{6},x_{7},x_{8},z_{8},x_{9},z_{9},x_{10},z_{10},x_{11},y_{11},z_{11}$

Species:

Running:

Output: