Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB14C2_oI68_74_a_3i2j_h-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/U35P
or https://aflow.org/p/AB14C2_oI68_74_a_3i2j_h-001
or PDF Version

MgAlB$_{14}$ Structure: AB14C2_oI68_74_a_3i2j_h-001

Picture of Structure; Click for Big Picture
Prototype AlB$_{14}$Mg
AFLOW prototype label AB14C2_oI68_74_a_3i2j_h-001
ICSD 30728
Pearson symbol oI68
Space group number 74
Space group symbol $Imma$
AFLOW prototype command aflow --proto=AB14C2_oI68_74_a_3i2j_h-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}$

Other compounds with this structure

ErAlB$_{14}$,  LuAlB$_{14}$,  TmAlB$_{14}$,  YbAlB$_{14}$


  • The Al (4a) sites are only occupied 74.8% of the time, and the Mg (8h) sites is only occupied 39.0% of the time, so the the actual composition of this sample is Mg$_{0.780}$Al$_{0.748}$B$_{14}$.
  • The atoms on the Mg (8h) site form pairs separated by 0.4Å, much too close to be physical, so at most only one site in each pair can be occupied. Alternatively, if we set $x_{5} = 0$ then the pairs merge to become a (4e) site, with occupation 0.78. This structure may be more convenient for electronic structure calculations.
  • (Higashi, 1983) give the structure in the $Imam$ setting of space group #74. We used FINDSYM and AFLOW to transform this to the standard $Imma$ setting.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (4a) Al I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}b \,\mathbf{\hat{y}}$ (4a) Al I
$\mathbf{B_{3}}$ = $\left(y_{2} + z_{2}\right) \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}+y_{2} \, \mathbf{a}_{3}$ = $b y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (8h) Mg I
$\mathbf{B_{4}}$ = $\left(- y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (8h) Mg I
$\mathbf{B_{5}}$ = $\left(y_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $b \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ (8h) Mg I
$\mathbf{B_{6}}$ = $- \left(y_{2} + z_{2}\right) \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}- y_{2} \, \mathbf{a}_{3}$ = $- b y_{2} \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ (8h) Mg I
$\mathbf{B_{7}}$ = $\left(z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (8i) B I
$\mathbf{B_{8}}$ = $\left(z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (8i) B I
$\mathbf{B_{9}}$ = $- \left(z_{3} - \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (8i) B I
$\mathbf{B_{10}}$ = $- \left(z_{3} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (8i) B I
$\mathbf{B_{11}}$ = $\left(z_{4} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (8i) B II
$\mathbf{B_{12}}$ = $\left(z_{4} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{4} - z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (8i) B II
$\mathbf{B_{13}}$ = $- \left(z_{4} - \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{4} + z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (8i) B II
$\mathbf{B_{14}}$ = $- \left(z_{4} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{4} - z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (8i) B II
$\mathbf{B_{15}}$ = $\left(z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (8i) B III
$\mathbf{B_{16}}$ = $\left(z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (8i) B III
$\mathbf{B_{17}}$ = $- \left(z_{5} - \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{5} + z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (8i) B III
$\mathbf{B_{18}}$ = $- \left(z_{5} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{5} - z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (8i) B III
$\mathbf{B_{19}}$ = $\left(y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6}\right) \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (16j) B IV
$\mathbf{B_{20}}$ = $\left(- y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{6} - z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- b \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (16j) B IV
$\mathbf{B_{21}}$ = $\left(y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(- x_{6} + y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+b \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (16j) B IV
$\mathbf{B_{22}}$ = $- \left(y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} - z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (16j) B IV
$\mathbf{B_{23}}$ = $- \left(y_{6} + z_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} + z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6}\right) \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (16j) B IV
$\mathbf{B_{24}}$ = $\left(y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} - z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+b \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (16j) B IV
$\mathbf{B_{25}}$ = $\left(- y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}- b \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (16j) B IV
$\mathbf{B_{26}}$ = $\left(y_{6} + z_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} - z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (16j) B IV
$\mathbf{B_{27}}$ = $\left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7}\right) \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (16j) B V
$\mathbf{B_{28}}$ = $\left(- y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- b \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (16j) B V
$\mathbf{B_{29}}$ = $\left(y_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(- x_{7} + y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+b \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (16j) B V
$\mathbf{B_{30}}$ = $- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (16j) B V
$\mathbf{B_{31}}$ = $- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (16j) B V
$\mathbf{B_{32}}$ = $\left(y_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+b \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (16j) B V
$\mathbf{B_{33}}$ = $\left(- y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}- b \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (16j) B V
$\mathbf{B_{34}}$ = $\left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (16j) B V

References


Prototype Generator

aflow --proto=AB14C2_oI68_74_a_3i2j_h --params=$a,b/a,c/a,y_{2},z_{2},x_{3},z_{3},x_{4},z_{4},x_{5},z_{5},x_{6},y_{6},z_{6},x_{7},y_{7},z_{7}$

Species:

Running:

Output: