Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB2C3D2_tP16_90_c_f_ce_e-001

This structure originally had the label AB2C3D2_tP16_90_c_f_ce_e. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/ZUNT
or https://aflow.org/p/AB2C3D2_tP16_90_c_f_ce_e-001
or PDF Version

$G7_{5}$ (PbCO$_{3}\cdot$PbCl$_{2}$, Phosgenite) (Obsolete) Structure: AB2C3D2_tP16_90_c_f_ce_e-001

Picture of Structure; Click for Big Picture
Prototype CCl$_{2}$O$_{3}$Pb$_{2}$
AFLOW prototype label AB2C3D2_tP16_90_c_f_ce_e-001
Strukturbericht designation $G7_{5}$
Mineral name phosgenite
ICSD none
Pearson symbol tP16
Space group number 90
Space group symbol $P42_12$
AFLOW prototype command aflow --proto=AB2C3D2_tP16_90_c_f_ce_e-001
--params=$a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}$

  • (Onotaro, 1934) made an early determination of the structure of phosgenite, and (Gottfried, 1937) assigned it the Strukturbericht designation $G7_{5}$. However, the proposed structure [was] based on photographic data and partly on steric considerations (Giuseppetti, 1974). Subsequent investigations showed that the true phosgenite structure was in space group $P4/mbm$ #127. We list the original structure here as part of the historical record.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (2c) C I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{1} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{1} \,\mathbf{\hat{z}}$ (2c) C I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (2c) O I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{2} \,\mathbf{\hat{z}}$ (2c) O I
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}$ (4e) O II
$\mathbf{B_{6}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}$ (4e) O II
$\mathbf{B_{7}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}$ (4e) O II
$\mathbf{B_{8}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}$ (4e) O II
$\mathbf{B_{9}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}$ = $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}$ (4e) Pb I
$\mathbf{B_{10}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}$ = $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}$ (4e) Pb I
$\mathbf{B_{11}}$ = $- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}$ = $- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}$ (4e) Pb I
$\mathbf{B_{12}}$ = $\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}$ = $a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}$ (4e) Pb I
$\mathbf{B_{13}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4f) Cl I
$\mathbf{B_{14}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4f) Cl I
$\mathbf{B_{15}}$ = $- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4f) Cl I
$\mathbf{B_{16}}$ = $\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4f) Cl I

References

  • E. Onotaro, La struttura della Fosgenite, Period. d. Mineral. 5, 1–27 (1934).
  • C. Gottfried and F. Schossberger, eds., Strukturbericht Band III 1933-1935 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).

Found in

  • G. Giuseppetti and C. Tadini, Reexamination of the crystal structure of phosgenite, Pb$_{2}$Cl$_{2}$(CO$_{3}$), TMPM 21, 101–109 (1974), doi:10.1007/BF01081262.

Prototype Generator

aflow --proto=AB2C3D2_tP16_90_c_f_ce_e --params=$a,c/a,z_{1},z_{2},x_{3},x_{4},x_{5}$

Species:

Running:

Output: