AFLOW Prototype: AB2C3_oC96_66_ik_cdj2k_gl2m-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/9VYY
or
https://aflow.org/p/AB2C3_oC96_66_ik_cdj2k_gl2m-001
or
PDF Version
Prototype | IrLi$_{2}$O$_{3}$ |
AFLOW prototype label | AB2C3_oC96_66_ik_cdj2k_gl2m-001 |
ICSD | none |
Pearson symbol | oC96 |
Space group number | 66 |
Space group symbol | $Cccm$ |
AFLOW prototype command |
aflow --proto=AB2C3_oC96_66_ik_cdj2k_gl2m-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{3}, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{6}, \allowbreak z_{7}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (4c) | Li I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4c) | Li I |
$\mathbf{B_{3}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}$ | (4d) | Li II |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4d) | Li II |
$\mathbf{B_{5}}$ | = | $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8g) | O I |
$\mathbf{B_{6}}$ | = | $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8g) | O I |
$\mathbf{B_{7}}$ | = | $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (8g) | O I |
$\mathbf{B_{8}}$ | = | $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (8g) | O I |
$\mathbf{B_{9}}$ | = | $z_{4} \, \mathbf{a}_{3}$ | = | $c z_{4} \,\mathbf{\hat{z}}$ | (8i) | Ir I |
$\mathbf{B_{10}}$ | = | $- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- c \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8i) | Ir I |
$\mathbf{B_{11}}$ | = | $- z_{4} \, \mathbf{a}_{3}$ | = | $- c z_{4} \,\mathbf{\hat{z}}$ | (8i) | Ir I |
$\mathbf{B_{12}}$ | = | $\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8i) | Ir I |
$\mathbf{B_{13}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{5} \,\mathbf{\hat{z}}$ | (8j) | Li III |
$\mathbf{B_{14}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- c \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8j) | Li III |
$\mathbf{B_{15}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{5} \,\mathbf{\hat{z}}$ | (8j) | Li III |
$\mathbf{B_{16}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8j) | Li III |
$\mathbf{B_{17}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (8k) | Ir II |
$\mathbf{B_{18}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{4}b \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8k) | Ir II |
$\mathbf{B_{19}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ | (8k) | Ir II |
$\mathbf{B_{20}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{4}b \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8k) | Ir II |
$\mathbf{B_{21}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (8k) | Li IV |
$\mathbf{B_{22}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{4}b \,\mathbf{\hat{y}}- c \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8k) | Li IV |
$\mathbf{B_{23}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ | (8k) | Li IV |
$\mathbf{B_{24}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{4}b \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8k) | Li IV |
$\mathbf{B_{25}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (8k) | Li V |
$\mathbf{B_{26}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{4}b \,\mathbf{\hat{y}}- c \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8k) | Li V |
$\mathbf{B_{27}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ | (8k) | Li V |
$\mathbf{B_{28}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{4}b \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8k) | Li V |
$\mathbf{B_{29}}$ | = | $\left(x_{9} - y_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} + y_{9}\right) \, \mathbf{a}_{2}$ | = | $a x_{9} \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}$ | (8l) | O II |
$\mathbf{B_{30}}$ | = | $- \left(x_{9} - y_{9}\right) \, \mathbf{a}_{1}- \left(x_{9} + y_{9}\right) \, \mathbf{a}_{2}$ | = | $- a x_{9} \,\mathbf{\hat{x}}- b y_{9} \,\mathbf{\hat{y}}$ | (8l) | O II |
$\mathbf{B_{31}}$ | = | $- \left(x_{9} + y_{9}\right) \, \mathbf{a}_{1}- \left(x_{9} - y_{9}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{9} \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (8l) | O II |
$\mathbf{B_{32}}$ | = | $\left(x_{9} + y_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} - y_{9}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{9} \,\mathbf{\hat{x}}- b y_{9} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (8l) | O II |
$\mathbf{B_{33}}$ | = | $\left(x_{10} - y_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} + y_{10}\right) \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ | = | $a x_{10} \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ | (16m) | O III |
$\mathbf{B_{34}}$ | = | $- \left(x_{10} - y_{10}\right) \, \mathbf{a}_{1}- \left(x_{10} + y_{10}\right) \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ | = | $- a x_{10} \,\mathbf{\hat{x}}- b y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ | (16m) | O III |
$\mathbf{B_{35}}$ | = | $- \left(x_{10} + y_{10}\right) \, \mathbf{a}_{1}- \left(x_{10} - y_{10}\right) \, \mathbf{a}_{2}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{10} \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}- c \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (16m) | O III |
$\mathbf{B_{36}}$ | = | $\left(x_{10} + y_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} - y_{10}\right) \, \mathbf{a}_{2}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{10} \,\mathbf{\hat{x}}- b y_{10} \,\mathbf{\hat{y}}- c \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (16m) | O III |
$\mathbf{B_{37}}$ | = | $- \left(x_{10} - y_{10}\right) \, \mathbf{a}_{1}- \left(x_{10} + y_{10}\right) \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ | = | $- a x_{10} \,\mathbf{\hat{x}}- b y_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ | (16m) | O III |
$\mathbf{B_{38}}$ | = | $\left(x_{10} - y_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} + y_{10}\right) \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ | = | $a x_{10} \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ | (16m) | O III |
$\mathbf{B_{39}}$ | = | $\left(x_{10} + y_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} - y_{10}\right) \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{10} \,\mathbf{\hat{x}}- b y_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (16m) | O III |
$\mathbf{B_{40}}$ | = | $- \left(x_{10} + y_{10}\right) \, \mathbf{a}_{1}- \left(x_{10} - y_{10}\right) \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{10} \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (16m) | O III |
$\mathbf{B_{41}}$ | = | $\left(x_{11} - y_{11}\right) \, \mathbf{a}_{1}+\left(x_{11} + y_{11}\right) \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ | = | $a x_{11} \,\mathbf{\hat{x}}+b y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ | (16m) | O IV |
$\mathbf{B_{42}}$ | = | $- \left(x_{11} - y_{11}\right) \, \mathbf{a}_{1}- \left(x_{11} + y_{11}\right) \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ | = | $- a x_{11} \,\mathbf{\hat{x}}- b y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ | (16m) | O IV |
$\mathbf{B_{43}}$ | = | $- \left(x_{11} + y_{11}\right) \, \mathbf{a}_{1}- \left(x_{11} - y_{11}\right) \, \mathbf{a}_{2}- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{11} \,\mathbf{\hat{x}}+b y_{11} \,\mathbf{\hat{y}}- c \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (16m) | O IV |
$\mathbf{B_{44}}$ | = | $\left(x_{11} + y_{11}\right) \, \mathbf{a}_{1}+\left(x_{11} - y_{11}\right) \, \mathbf{a}_{2}- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{11} \,\mathbf{\hat{x}}- b y_{11} \,\mathbf{\hat{y}}- c \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (16m) | O IV |
$\mathbf{B_{45}}$ | = | $- \left(x_{11} - y_{11}\right) \, \mathbf{a}_{1}- \left(x_{11} + y_{11}\right) \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ | = | $- a x_{11} \,\mathbf{\hat{x}}- b y_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ | (16m) | O IV |
$\mathbf{B_{46}}$ | = | $\left(x_{11} - y_{11}\right) \, \mathbf{a}_{1}+\left(x_{11} + y_{11}\right) \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ | = | $a x_{11} \,\mathbf{\hat{x}}+b y_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ | (16m) | O IV |
$\mathbf{B_{47}}$ | = | $\left(x_{11} + y_{11}\right) \, \mathbf{a}_{1}+\left(x_{11} - y_{11}\right) \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{11} \,\mathbf{\hat{x}}- b y_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (16m) | O IV |
$\mathbf{B_{48}}$ | = | $- \left(x_{11} + y_{11}\right) \, \mathbf{a}_{1}- \left(x_{11} - y_{11}\right) \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{11} \,\mathbf{\hat{x}}+b y_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (16m) | O IV |