Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB2C3_oC96_66_ik_cdj2k_gl2m-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/9VYY
or https://aflow.org/p/AB2C3_oC96_66_ik_cdj2k_gl2m-001
or PDF Version

γ-Li$_{2}$IrO$_{3}$ Structure: AB2C3_oC96_66_ik_cdj2k_gl2m-001

Picture of Structure; Click for Big Picture
Prototype IrLi$_{2}$O$_{3}$
AFLOW prototype label AB2C3_oC96_66_ik_cdj2k_gl2m-001
ICSD none
Pearson symbol oC96
Space group number 66
Space group symbol $Cccm$
AFLOW prototype command aflow --proto=AB2C3_oC96_66_ik_cdj2k_gl2m-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{3}, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{6}, \allowbreak z_{7}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}$

  • Li$_{2}$IrO$_{3}$ can be found in three structures (Choi, 2020):
    • $\alpha$–Li$_{2}$IrO$_{3}$, which is isostructural with Li$_{2}$SnO$_{3}$,
    • $\beta$–Li$_{2}$IrO$_{3}$, which is isostructural with $\beta$–Na$_{2}$PtO$_{3}$, and
    • the current structure, $\gamma$–Li$_{2}$IrO$_{3}$.
    špace{-.25in}
  • There is no ICSD entry for (Modic, 2014), but they do provide their own CIF as part of their supplementary material.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (4c) Li I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (4c) Li I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}$ (4d) Li II
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4d) Li II
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8g) O I
$\mathbf{B_{6}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8g) O I
$\mathbf{B_{7}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (8g) O I
$\mathbf{B_{8}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (8g) O I
$\mathbf{B_{9}}$ = $z_{4} \, \mathbf{a}_{3}$ = $c z_{4} \,\mathbf{\hat{z}}$ (8i) Ir I
$\mathbf{B_{10}}$ = $- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- c \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8i) Ir I
$\mathbf{B_{11}}$ = $- z_{4} \, \mathbf{a}_{3}$ = $- c z_{4} \,\mathbf{\hat{z}}$ (8i) Ir I
$\mathbf{B_{12}}$ = $\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8i) Ir I
$\mathbf{B_{13}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{5} \,\mathbf{\hat{z}}$ (8j) Li III
$\mathbf{B_{14}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) Li III
$\mathbf{B_{15}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{5} \,\mathbf{\hat{z}}$ (8j) Li III
$\mathbf{B_{16}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) Li III
$\mathbf{B_{17}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (8k) Ir II
$\mathbf{B_{18}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{4}b \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8k) Ir II
$\mathbf{B_{19}}$ = $\frac{1}{2} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (8k) Ir II
$\mathbf{B_{20}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{4}b \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8k) Ir II
$\mathbf{B_{21}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (8k) Li IV
$\mathbf{B_{22}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{4}b \,\mathbf{\hat{y}}- c \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8k) Li IV
$\mathbf{B_{23}}$ = $\frac{1}{2} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (8k) Li IV
$\mathbf{B_{24}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{4}b \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8k) Li IV
$\mathbf{B_{25}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (8k) Li V
$\mathbf{B_{26}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{4}b \,\mathbf{\hat{y}}- c \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8k) Li V
$\mathbf{B_{27}}$ = $\frac{1}{2} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (8k) Li V
$\mathbf{B_{28}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{4}b \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8k) Li V
$\mathbf{B_{29}}$ = $\left(x_{9} - y_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} + y_{9}\right) \, \mathbf{a}_{2}$ = $a x_{9} \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}$ (8l) O II
$\mathbf{B_{30}}$ = $- \left(x_{9} - y_{9}\right) \, \mathbf{a}_{1}- \left(x_{9} + y_{9}\right) \, \mathbf{a}_{2}$ = $- a x_{9} \,\mathbf{\hat{x}}- b y_{9} \,\mathbf{\hat{y}}$ (8l) O II
$\mathbf{B_{31}}$ = $- \left(x_{9} + y_{9}\right) \, \mathbf{a}_{1}- \left(x_{9} - y_{9}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8l) O II
$\mathbf{B_{32}}$ = $\left(x_{9} + y_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} - y_{9}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}- b y_{9} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8l) O II
$\mathbf{B_{33}}$ = $\left(x_{10} - y_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} + y_{10}\right) \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (16m) O III
$\mathbf{B_{34}}$ = $- \left(x_{10} - y_{10}\right) \, \mathbf{a}_{1}- \left(x_{10} + y_{10}\right) \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}- b y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (16m) O III
$\mathbf{B_{35}}$ = $- \left(x_{10} + y_{10}\right) \, \mathbf{a}_{1}- \left(x_{10} - y_{10}\right) \, \mathbf{a}_{2}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}- c \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16m) O III
$\mathbf{B_{36}}$ = $\left(x_{10} + y_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} - y_{10}\right) \, \mathbf{a}_{2}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}- b y_{10} \,\mathbf{\hat{y}}- c \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16m) O III
$\mathbf{B_{37}}$ = $- \left(x_{10} - y_{10}\right) \, \mathbf{a}_{1}- \left(x_{10} + y_{10}\right) \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}- b y_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (16m) O III
$\mathbf{B_{38}}$ = $\left(x_{10} - y_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} + y_{10}\right) \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (16m) O III
$\mathbf{B_{39}}$ = $\left(x_{10} + y_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} - y_{10}\right) \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}- b y_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16m) O III
$\mathbf{B_{40}}$ = $- \left(x_{10} + y_{10}\right) \, \mathbf{a}_{1}- \left(x_{10} - y_{10}\right) \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16m) O III
$\mathbf{B_{41}}$ = $\left(x_{11} - y_{11}\right) \, \mathbf{a}_{1}+\left(x_{11} + y_{11}\right) \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}+b y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (16m) O IV
$\mathbf{B_{42}}$ = $- \left(x_{11} - y_{11}\right) \, \mathbf{a}_{1}- \left(x_{11} + y_{11}\right) \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}- b y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (16m) O IV
$\mathbf{B_{43}}$ = $- \left(x_{11} + y_{11}\right) \, \mathbf{a}_{1}- \left(x_{11} - y_{11}\right) \, \mathbf{a}_{2}- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}+b y_{11} \,\mathbf{\hat{y}}- c \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16m) O IV
$\mathbf{B_{44}}$ = $\left(x_{11} + y_{11}\right) \, \mathbf{a}_{1}+\left(x_{11} - y_{11}\right) \, \mathbf{a}_{2}- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}- b y_{11} \,\mathbf{\hat{y}}- c \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16m) O IV
$\mathbf{B_{45}}$ = $- \left(x_{11} - y_{11}\right) \, \mathbf{a}_{1}- \left(x_{11} + y_{11}\right) \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}- b y_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ (16m) O IV
$\mathbf{B_{46}}$ = $\left(x_{11} - y_{11}\right) \, \mathbf{a}_{1}+\left(x_{11} + y_{11}\right) \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}+b y_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ (16m) O IV
$\mathbf{B_{47}}$ = $\left(x_{11} + y_{11}\right) \, \mathbf{a}_{1}+\left(x_{11} - y_{11}\right) \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}- b y_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16m) O IV
$\mathbf{B_{48}}$ = $- \left(x_{11} + y_{11}\right) \, \mathbf{a}_{1}- \left(x_{11} - y_{11}\right) \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}+b y_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16m) O IV

References

  • K. A. Modic, T. E. Smidt, I. Kimchi, N. P. Breznay, A. Biffin, S. Choi, R. D. Johnson, R. Coldea, P. Watkins-Curry, G. T. McCandless, J. Y. Chan, F. Gandara, Z. Islam, A. Vishwanath, A. Shekhter, R. D. McDonald, and J. G. Analytis, Realization of a three-dimensional spin–anisotropic harmonic honeycomb iridate, Nature Comm. 5, 4203 (2014), doi:10.1038/ncomms5203.

Found in

  • S. Choi, H.-S. Kim, H.-H. Kim, A. Krajewska, G. Kim, M. Minola, T. Takayama, H. Takagi, K. Haule, D. Vanderbilt, and B. Keimer, Lattice dynamics and structural transition of the hyperhoneycomb iridate $\beta$-Li$_{2}$IrO$_{3}$ investigated by high-pressure Raman scattering, Phys. Rev. B 101, 054120 (2020), doi:10.1103/PhysRevB.101.054102.

Prototype Generator

aflow --proto=AB2C3_oC96_66_ik_cdj2k_gl2m --params=$a,b/a,c/a,x_{3},z_{4},z_{5},z_{6},z_{7},z_{8},x_{9},y_{9},x_{10},y_{10},z_{10},x_{11},y_{11},z_{11}$

Species:

Running:

Output: