Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB2C4_oC28_64_a_d_ef-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/UBCB
or https://aflow.org/p/AB2C4_oC28_64_a_d_ef-001
or PDF Version

Gd$_{2}$CuO$_{4}$ Structure: AB2C4_oC28_64_a_d_ef-001

Picture of Structure; Click for Big Picture
Prototype CuGd$_{2}$O$_{4}$
AFLOW prototype label AB2C4_oC28_64_a_d_ef-001
ICSD 75425
Pearson symbol oC28
Space group number 64
Space group symbol $Cmce$
AFLOW prototype command aflow --proto=AB2C4_oC28_64_a_d_ef-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak y_{3}, \allowbreak y_{4}, \allowbreak z_{4}$

Other compounds with this structure

Eu$_{2}$CuO$_{4}$


  • This is a slight orthorhombic distortion of the Nd$_{2}$CuO$_{4}$ structure, and there is some evidence that both Gd$_{2}$CuO$_{4}$ and Eu$_{2}$CuO$_{4}$ transform to the Nd$_{2}$CuO$_{4}$ structure at higher temperatures.
  • We did not find an ICSD from (Luo, 1999), so we use the one from the earlier work of (Braden, 1994).

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (4a) Cu I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4a) Cu I
$\mathbf{B_{3}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}$ = $a x_{2} \,\mathbf{\hat{x}}$ (8d) Gd I
$\mathbf{B_{4}}$ = $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8d) Gd I
$\mathbf{B_{5}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}$ = $- a x_{2} \,\mathbf{\hat{x}}$ (8d) Gd I
$\mathbf{B_{6}}$ = $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8d) Gd I
$\mathbf{B_{7}}$ = $- \left(y_{3} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8e) O I
$\mathbf{B_{8}}$ = $\left(y_{3} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(y_{3} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (8e) O I
$\mathbf{B_{9}}$ = $\left(y_{3} + \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(y_{3} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (8e) O I
$\mathbf{B_{10}}$ = $- \left(y_{3} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{3} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8e) O I
$\mathbf{B_{11}}$ = $- y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (8f) O II
$\mathbf{B_{12}}$ = $\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) O II
$\mathbf{B_{13}}$ = $- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) O II
$\mathbf{B_{14}}$ = $y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- b y_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (8f) O II

References

  • H. M. Luo, Y. Y. Hsu, B. N. Lin, Y. P. Chi, T. J. Lee, and H. C. Ku, Correlation between weak ferromagnetism and crystal symmetry in Gd$_{2}$CuO$_{4}$-type cuprates, Phys. Rev. B 60, 13119–13124 (1999), doi:10.1103/PhysRevB.60.13119.
  • M. Braden, W. Paulus, A. C. P. Vigoureux, G. Heger, A. Goukassov, P. Bourges, and D. Petitgrand, Structure analysis of Gd$_{2}$CuO$_{4}$: a new modification of the T' phase, EPL-Europhys. Lett. 25, 625–630 (1994), doi:10.1209/0295-5075/25/8/011.

Found in

  • H. M. Luo, S. Y. Ding, Y. Y. Hsu, B. N. Lin, and H. Ku, Weak ferromagnetism in distorted T'-phase cuprates, Physica C 351, 91–96 (2001), doi:10.1016/S0921-4534(00)01623-3.

Prototype Generator

aflow --proto=AB2C4_oC28_64_a_d_ef --params=$a,b/a,c/a,x_{2},y_{3},y_{4},z_{4}$

Species:

Running:

Output: