Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB2C4_oC28_64_a_f_ef-003

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/Y6BX
or https://aflow.org/p/AB2C4_oC28_64_a_f_ef-003
or PDF Version

Base-Centered Orthorhombic La$_{2}$CuO$_{4}$ Structure: AB2C4_oC28_64_a_f_ef-003

Picture of Structure; Click for Big Picture
Prototype CuLa$_{2}$O$_{4}$
AFLOW prototype label AB2C4_oC28_64_a_f_ef-003
ICSD 155496
Pearson symbol oC28
Space group number 64
Space group symbol $Cmce$
AFLOW prototype command aflow --proto=AB2C4_oC28_64_a_f_ef-003
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak y_{2}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak y_{4}, \allowbreak z_{4}$

Other compounds with this structure

La$_{2}$NiO$_{4}$,  Nd$_{2}$CeO$_{4}$


  • We have found three possible structures for La$_{2}$CuO$_{4}$, the parent compound of the high-temperature cuprate superconductors.
  • All are distortions of the tetragonal K$_{2}$NiF$_{4}$/0201 [(La,Ba)$_{2}$CuO$_{4}$] High-T$_{c}$ Structure, and reduce to that structure with doping of the lanthanum site:
  • As the two orthorhombic structures are both referenced in the literature, we present them, as well as the more recent monoclinic structure.
  • (Reehuis, 2006) gave the structure of the base-centered phase in the $Bmab$ setting of space group #64. We used FINDSYM to transform it to the standard $Cmca$ setting.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (4a) Cu I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4a) Cu I
$\mathbf{B_{3}}$ = $- \left(y_{2} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(y_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8e) O I
$\mathbf{B_{4}}$ = $\left(y_{2} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(y_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (8e) O I
$\mathbf{B_{5}}$ = $\left(y_{2} + \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(y_{2} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (8e) O I
$\mathbf{B_{6}}$ = $- \left(y_{2} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{2} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8e) O I
$\mathbf{B_{7}}$ = $- y_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $b y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (8f) La I
$\mathbf{B_{8}}$ = $\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) La I
$\mathbf{B_{9}}$ = $- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) La I
$\mathbf{B_{10}}$ = $y_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- b y_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (8f) La I
$\mathbf{B_{11}}$ = $- y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (8f) O II
$\mathbf{B_{12}}$ = $\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) O II
$\mathbf{B_{13}}$ = $- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) O II
$\mathbf{B_{14}}$ = $y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- b y_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (8f) O II

References

  • M. Reehuis, C. Ulrich, K. Prokeš, A. Gozar, G. Blumberg, S. Komiya, Y. Ando, P. Pattison, and B. Keimer, Crystal structure and high-field magnetism of La$_{2}$CuO$_{4}$, Phys. Rev. B 73, 144513 (2006), doi:10.1103/PhysRevB.73.144513.
  • J. M. Longo and P. M. Raccah, The structure of La$_{2}$CuO$_{4}$ and LaSrVO$_{4}$, J. Solid State Chem. 6, 526–531 (1973), doi:10.1016/S0022-4596(73)80010-6.

Prototype Generator

aflow --proto=AB2C4_oC28_64_a_f_ef --params=$a,b/a,c/a,y_{2},y_{3},z_{3},y_{4},z_{4}$

Species:

Running:

Output: