Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB2C4_tI14_139_a_e_cd-003

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/1V8W
or https://aflow.org/p/AB2C4_tI14_139_a_e_cd-003
or PDF Version

(T') Nd$_{2}$CuO$_{4}$ Structure: AB2C4_tI14_139_a_e_cd-003

Picture of Structure; Click for Big Picture
Prototype CuNd$_{2}$O$_{4}$
AFLOW prototype label AB2C4_tI14_139_a_e_cd-003
ICSD 69886
Pearson symbol tI14
Space group number 139
Space group symbol $I4/mmm$
AFLOW prototype command aflow --proto=AB2C4_tI14_139_a_e_cd-003
--params=$a, \allowbreak c/a, \allowbreak z_{4}$

Other compounds with this structure

Eu$_{2}$CuO$_{4}$,  Gd$_{2}$CuO$_{4}$,  La$_{2}$CuO$_{4}$,  Pr$_{2}$CuO$_{4}$,  Sm$_{2}$CuO$_{4}$


  • This is often referred to as the ‘T’-’ phase of the RE$_{2}$CuO$_{4}$ compounds.
  • Lattice constants were determined at 80 mK. The value of $z_{4}$ for the neodymium atom was determined at 0.5K.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Cu I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}$ (4c) O I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}$ (4c) O I
$\mathbf{B_{4}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4d) O II
$\mathbf{B_{5}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4d) O II
$\mathbf{B_{6}}$ = $z_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}$ = $c z_{4} \,\mathbf{\hat{z}}$ (4e) Nd I
$\mathbf{B_{7}}$ = $- z_{4} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}$ = $- c z_{4} \,\mathbf{\hat{z}}$ (4e) Nd I

References

  • T. Chattopadhyay, P. J. Brown, and U. Kübler, Crystal and magnetic structure of Nd$_{2}$CuO$_{4}$ at millikelvin temperatures, Physica C 177, 294–296 (1991), doi:10.1016/0921-4534(91)90482-E.

Prototype Generator

aflow --proto=AB2C4_tI14_139_a_e_cd --params=$a,c/a,z_{4}$

Species:

Running:

Output: