AFLOW Prototype: AB2C4_tI14_139_a_e_ce-001
This structure originally had the label AB2C4_tI14_139_a_e_ce. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/V35A
or
https://aflow.org/p/AB2C4_tI14_139_a_e_ce-001
or
PDF Version
Prototype | Ba$_{2}$CuO$_{4}$ |
AFLOW prototype label | AB2C4_tI14_139_a_e_ce-001 |
ICSD | 68379 |
Pearson symbol | tI14 |
Space group number | 139 |
Space group symbol | $I4/mmm$ |
AFLOW prototype command |
aflow --proto=AB2C4_tI14_139_a_e_ce-001
--params=$a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak z_{4}$ |
Ba$_{2}$CuO$_{3+\delta}$
high-temperature (30K) superconductor found by Bednorz and Mueller. Lanthanum (92.5%) and barium (7.5%) atoms are distributed randomly on the lanthanum sublattice. The ground state structure of the parent compound, La$_{2}$CuO$_{4}$, is a face-centered orthorhombic, base-centered orthorhombic, or base-centered monoclinic distortion of this structure.
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2a) | Cu I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}$ | (4c) | O I |
$\mathbf{B_{3}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}$ | (4c) | O I |
$\mathbf{B_{4}}$ | = | $z_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}$ | = | $c z_{3} \,\mathbf{\hat{z}}$ | (4e) | La I |
$\mathbf{B_{5}}$ | = | $- z_{3} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}$ | = | $- c z_{3} \,\mathbf{\hat{z}}$ | (4e) | La I |
$\mathbf{B_{6}}$ | = | $z_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}$ | = | $c z_{4} \,\mathbf{\hat{z}}$ | (4e) | O II |
$\mathbf{B_{7}}$ | = | $- z_{4} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}$ | = | $- c z_{4} \,\mathbf{\hat{z}}$ | (4e) | O II |