Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB2C4_tI14_139_a_e_ce-001

This structure originally had the label AB2C4_tI14_139_a_e_ce. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/V35A
or https://aflow.org/p/AB2C4_tI14_139_a_e_ce-001
or PDF Version

0201 [(La,Ba)$_{2}$CuO$_{4}$] High-$T_{c}$ Structure: AB2C4_tI14_139_a_e_ce-001

Picture of Structure; Click for Big Picture
Prototype Ba$_{2}$CuO$_{4}$
AFLOW prototype label AB2C4_tI14_139_a_e_ce-001
ICSD 68379
Pearson symbol tI14
Space group number 139
Space group symbol $I4/mmm$
AFLOW prototype command aflow --proto=AB2C4_tI14_139_a_e_ce-001
--params=$a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak z_{4}$

Other compounds with this structure

Ba$_{2}$CuO$_{3+\delta}$



\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Cu I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}$ (4c) O I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}$ (4c) O I
$\mathbf{B_{4}}$ = $z_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}$ = $c z_{3} \,\mathbf{\hat{z}}$ (4e) La I
$\mathbf{B_{5}}$ = $- z_{3} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}$ = $- c z_{3} \,\mathbf{\hat{z}}$ (4e) La I
$\mathbf{B_{6}}$ = $z_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}$ = $c z_{4} \,\mathbf{\hat{z}}$ (4e) O II
$\mathbf{B_{7}}$ = $- z_{4} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}$ = $- c z_{4} \,\mathbf{\hat{z}}$ (4e) O II

References

  • J. D. Jorgensen, H.-B. Schüttler, D. G. Hinks, I. D. W. Capone, K. Zhang, and M. B. Brodsky, Lattice instability and high-$T_c$ superconductivity in La$_{2-x}$Ba$_x$CuO$_4$, Phys. Rev. Lett. 58, 1024–1029 (1987), doi:10.1103/PhysRevLett.58.1024.

Found in

  • H. Shaked, P. M. Keane, J. C. Rodrigues, F. F. Owen, R. L. Hitterman, and J. D. Jorgensen, Crystal Structures of the High-T$_c$ Superconducting Copper Oxides, Elsevier Science B. V., Amsterdam (1994).

Prototype Generator

aflow --proto=AB2C4_tI14_139_a_e_ce --params=$a,c/a,z_{3},z_{4}$

Species:

Running:

Output: