Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB2C6D_oC40_65_g_n_ijklm_h-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/VMAN
or https://aflow.org/p/AB2C6D_oC40_65_g_n_ijklm_h-001
or PDF Version

High Temperature SmBaMn$_{2}$O$_{6}$ Structure: AB2C6D_oC40_65_g_n_ijklm_h-001

Picture of Structure; Click for Big Picture
Prototype BaMn$_{2}$O$_{6}$Sm
AFLOW prototype label AB2C6D_oC40_65_g_n_ijklm_h-001
ICSD none
Pearson symbol oC40
Space group number 65
Space group symbol $Cmmm$
AFLOW prototype command aflow --proto=AB2C6D_oC40_65_g_n_ijklm_h-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak y_{3}, \allowbreak y_{4}, \allowbreak z_{5}, \allowbreak z_{6}, \allowbreak z_{7}, \allowbreak y_{8}, \allowbreak z_{8}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}$ = $a x_{1} \,\mathbf{\hat{x}}$ (4g) Ba I
$\mathbf{B_{2}}$ = $- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}$ = $- a x_{1} \,\mathbf{\hat{x}}$ (4g) Ba I
$\mathbf{B_{3}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4h) Sm I
$\mathbf{B_{4}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4h) Sm I
$\mathbf{B_{5}}$ = $- y_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}$ = $b y_{3} \,\mathbf{\hat{y}}$ (4i) O I
$\mathbf{B_{6}}$ = $y_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}$ = $- b y_{3} \,\mathbf{\hat{y}}$ (4i) O I
$\mathbf{B_{7}}$ = $- y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $b y_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4j) O II
$\mathbf{B_{8}}$ = $y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- b y_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4j) O II
$\mathbf{B_{9}}$ = $z_{5} \, \mathbf{a}_{3}$ = $c z_{5} \,\mathbf{\hat{z}}$ (4k) O III
$\mathbf{B_{10}}$ = $- z_{5} \, \mathbf{a}_{3}$ = $- c z_{5} \,\mathbf{\hat{z}}$ (4k) O III
$\mathbf{B_{11}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{6} \,\mathbf{\hat{z}}$ (4l) O IV
$\mathbf{B_{12}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{6} \,\mathbf{\hat{z}}$ (4l) O IV
$\mathbf{B_{13}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (8m) O V
$\mathbf{B_{14}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{4}b \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (8m) O V
$\mathbf{B_{15}}$ = $\frac{1}{2} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (8m) O V
$\mathbf{B_{16}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{4}b \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (8m) O V
$\mathbf{B_{17}}$ = $- y_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $b y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (8n) Mn I
$\mathbf{B_{18}}$ = $y_{8} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $- b y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (8n) Mn I
$\mathbf{B_{19}}$ = $- y_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $b y_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (8n) Mn I
$\mathbf{B_{20}}$ = $y_{8} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $- b y_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (8n) Mn I

References

  • H. Sagayama, S. Toyoda, K. Sugimoto, Y. Maeda, S. Yamada, and T. Arima, Ferroelectricity driven by charge ordering in the A-site ordered perovskite manganite SmBaMn$_{2}$O$_{6}$, Phys. Rev. B 96, 241113(R) (2014), doi:10.1103/PhysRevB.90.241113.

Found in

  • L. Chen, Z. Xiang, C. Tinsman, Q. Huang, K. G. Reynolds, H. Zhou, and L. Li, Anomalous thermal conductivity across the structural transition in SmBaMn$_{2}$O$_{6}$ single crystals, Appl. Phys. Lett. 114, 251904 (2019), doi:10.1063/1.5096960.

Prototype Generator

aflow --proto=AB2C6D_oC40_65_g_n_ijklm_h --params=$a,b/a,c/a,x_{1},x_{2},y_{3},y_{4},z_{5},z_{6},z_{7},y_{8},z_{8}$

Species:

Running:

Output: