AFLOW Prototype: AB2C6D_oC40_65_g_n_ijklm_h-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/VMAN
or
https://aflow.org/p/AB2C6D_oC40_65_g_n_ijklm_h-001
or
PDF Version
Prototype | BaMn$_{2}$O$_{6}$Sm |
AFLOW prototype label | AB2C6D_oC40_65_g_n_ijklm_h-001 |
ICSD | none |
Pearson symbol | oC40 |
Space group number | 65 |
Space group symbol | $Cmmm$ |
AFLOW prototype command |
aflow --proto=AB2C6D_oC40_65_g_n_ijklm_h-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak y_{3}, \allowbreak y_{4}, \allowbreak z_{5}, \allowbreak z_{6}, \allowbreak z_{7}, \allowbreak y_{8}, \allowbreak z_{8}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}$ | = | $a x_{1} \,\mathbf{\hat{x}}$ | (4g) | Ba I |
$\mathbf{B_{2}}$ | = | $- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}$ | = | $- a x_{1} \,\mathbf{\hat{x}}$ | (4g) | Ba I |
$\mathbf{B_{3}}$ | = | $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{2} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4h) | Sm I |
$\mathbf{B_{4}}$ | = | $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{2} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4h) | Sm I |
$\mathbf{B_{5}}$ | = | $- y_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}$ | = | $b y_{3} \,\mathbf{\hat{y}}$ | (4i) | O I |
$\mathbf{B_{6}}$ | = | $y_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}$ | = | $- b y_{3} \,\mathbf{\hat{y}}$ | (4i) | O I |
$\mathbf{B_{7}}$ | = | $- y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $b y_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4j) | O II |
$\mathbf{B_{8}}$ | = | $y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- b y_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4j) | O II |
$\mathbf{B_{9}}$ | = | $z_{5} \, \mathbf{a}_{3}$ | = | $c z_{5} \,\mathbf{\hat{z}}$ | (4k) | O III |
$\mathbf{B_{10}}$ | = | $- z_{5} \, \mathbf{a}_{3}$ | = | $- c z_{5} \,\mathbf{\hat{z}}$ | (4k) | O III |
$\mathbf{B_{11}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{6} \,\mathbf{\hat{z}}$ | (4l) | O IV |
$\mathbf{B_{12}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{6} \,\mathbf{\hat{z}}$ | (4l) | O IV |
$\mathbf{B_{13}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (8m) | O V |
$\mathbf{B_{14}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{4}b \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ | (8m) | O V |
$\mathbf{B_{15}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ | (8m) | O V |
$\mathbf{B_{16}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{4}b \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (8m) | O V |
$\mathbf{B_{17}}$ | = | $- y_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $b y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (8n) | Mn I |
$\mathbf{B_{18}}$ | = | $y_{8} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $- b y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (8n) | Mn I |
$\mathbf{B_{19}}$ | = | $- y_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ | = | $b y_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ | (8n) | Mn I |
$\mathbf{B_{20}}$ | = | $y_{8} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ | = | $- b y_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ | (8n) | Mn I |