AFLOW Prototype: AB2C_cF16_225_a_c_b-001
This structure originally had the label AB2C_cF16_225_a_c_b. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/02WQ
or
https://aflow.org/p/AB2C_cF16_225_a_c_b-001
or
PDF Version
Prototype | AlCu$_{2}$Mn |
AFLOW prototype label | AB2C_cF16_225_a_c_b-001 |
Strukturbericht designation | $L2_{1}$ |
Mineral name | heusler |
ICSD | 607008 |
Pearson symbol | cF16 |
Space group number | 225 |
Space group symbol | $Fm\overline{3}m$ |
AFLOW prototype command |
aflow --proto=AB2C_cF16_225_a_c_b-001
--params=$a$ |
Ag$_{2}$AlMn, Cd$_{2}$AgAu, Co$_{2}$AlHf, Co$_{2}$AlMn, Co$_{2}$AlNb, Co$_{2}$AlTa, Co$_{2}$AlZr, Co$_{2}$FeGe, Co$_{2}$GaMn, Co$_{2}$GaMn, Co$_{2}$GaNb, Co$_{2}$GaTa, Co$_{2}$GaTi, Co$_{2}$MnSi, Co$_{2}$MnSn, Co$_{2}$SiV, Co$_{2}$SnTi, Co$_{2}$SnV, Cu$_{2}$AlMn, Cu$_{2}$AlZr, Cu$_{2}$CoSn, Cu$_{2}$FeSn, Cu$_{2}$GaMn, Cu$_{2}$InMn, Cu$_{2}$InTi, Cu$_{2}$MnSb, Cu$_{2}$MnSn, Cu$_{2}$NiSn, Fe$_{2}$AlV, Fe$_{2}$AlCo, Fe$_{2}$GaTi, Fe$_{2}$GaV, Fe$_{2}$SnTi, K$_{2}$CsSb, Li$_{2}$AuSn, Li$_{2}$NaSb, Mg$_{2}$LiTl, Na$_{2}$KSb, Ni$_{2}$AlHf, Ni$_{2}$AlNb, Ni$_{2}$AlTa, Ni$_{2}$AlTi, Ni$_{2}$AlZr, Ni$_{2}$GaHf, Ni$_{2}$GaMn, Ni$_{2}$GaNb, Ni$_{2}$GaTa, Ni$_{2}$GaV, Ni$_{2}$GeMn, Ni$_{2}$InMg, Ni$_{2}$InMn, Ni$_{2}$InTi, Ni$_{2}$MgSb, Ni$_{2}$MgSn, Ni$_{2}$MnGa, Ni$_{2}$MnSb, Ni$_{2}$MnSn, Ni$_{2}$SnTi, Ni$_{2}$SnV, Pd$_{2}$AlMn, Pd$_{2}$InMn, Pd$_{2}$MnSb, Pd$_{2}$MnSn, Zn$_{2}$AgAu, $\beta$-Zn$_{2}$AuCu
quaternary-Heusler,LiMgAuSn.
half–Heuslerstructure.
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (4a) | Al I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (4b) | Mn I |
$\mathbf{B_{3}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (8c) | Cu I |
$\mathbf{B_{4}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ | (8c) | Cu I |
5.Folge. Band 19..